
BLOCK COURSE

Introduction to Numerical Methods
for Computer Simulation

Roland Pulch, Andreas Bartel

Manuscript Winterterm 2005/06,

Bergische Universität Wuppertal, Applied Mathematics / Numerical Analysis

Contents:

0. Introduction

1. Error Analysis

2. Vectors and Matrices

3. Direct Methods for Linear Systems

4. Iterative Methods for Linear Systems

5. Methods for Nonlinear Systems

Literature:

Stoer, J.; Bulirsch, R.: Introduction to Numerical Analysis, Springer.

Quateroni, A.; Sacco, R.; Saleri, F.: Numerical Mathematics, Springer.

Chapter 0

Introduction

0

Scientific Computing: Interdisciplinary subject consisting in mathematics,

applied sciences and information technology.

Examples for applications: reaction kinetics, circuit simulation, multibody

systems, fluid dynamics, financial products, etc.

Basis and core is Simulation. That needs: Modeling, Analysis, Algorithms,

Implementation, Visualization.

Mathematical part is Numerical Analysis: deals with the development and

investigation of computable models, and algorithms to compute the accord-

ing numerical solution.

Using computers, one has to be careful: e.g. finite amount of accuracy, and

error occurring in each step may falsify the solution. To underline this, we

investigate the following example.

Example 0.1 (Integral recursion) We want to compute the integrals

In =
1

e

∫ 1

0
xnex dx for n = 0, 1, 2,

Elementary integration fails for n > 0. Obviously, we have the bounds

0 < In < 1 for all n.

1

Using integration by parts, we can deduce the following:

In =
1

e

∫ 1

0
xnex dx

=
1

e

(
xnex

∣∣∣
1

0
−

∫ 1

0
nxn−1ex dx

)

=
1

e

(
e− n

∫ 1

0
xn−1ex dx

)

= 1− nIn−1

Result: 2-Term-Recursion

In = 1− nIn−1 (0.1)

Given I0, we can compute from (0.1) any integral In for n > 0.

Start value: I0 = 1
e

∫ 1
0 ex dx = e−1

e

.
= 0.632120558 . . .

Pocket calculator or computer (using MATLAB):

I0 = 0.6321..., . . . , I29 = 1.0989...·1014, I30 = −3.2968...·1015 ?????

Can the numerical computer results be correct?

A variant: instead of forward recursion (0.1), which behaves awkwardly,

one could try backward recursion:

In−1 = 1
n(1− In). (0.2)

As start value, we may pick: I30 = 1
2 (wrong!) and compute I0 (backward).

Surprisingly, result: I0 = 0.632120558 . . ., correct in all digits!

Explanation (pre-fetch):

forward recursion: errors are tremendously amplified

→ ill-conditioned

backwark recursion: errors are strongly damped, i.e. errors cancel out

→ well-conditioned

¦
2

These phenomena are studied in the next chapter (before we explain the

basic concepts and algorithms in numerics).

3

Chapter 1

Error Analysis

1

One of the main tasks in numerical mathematics is the assessment of accu-

racy, i.e. to investigate the quality of results produced by an algorithm.

Reasons:

• to guarantee a certain amount of accuracy in the resulting values.

• to give a correct interpretation of the results.

• to recognise the limitations of on algorithm.

During the whole procedure from modelling to computer simulation, errors

occur. We can distinguish:

1. modelling error simplification in physical problem (neglect of

effects in setup of mathematical description)

2. error in input data measurements

3. approximation error mathematical model vs. computer model

(e.g. continuous problem → discrete problem)

4. roundoff error finite grid of machine numbers

4

1.1 Number Representation: Floating-Point and Roundoff

Fundamental difference:

• real numbers R: without gap, unbounded, infinite

• machine representation: finite number of distinct values

realization in digital computer: via digits

power expansion to basis B; usual B = 10 (decimal), or B = 2 (dual)

19.25 = 1 · 101 + 9 · 100 + 2 · 10−1 + 5 · 10−2 = 1925 · 10−2 = 0.1925 · 102

Ã error in transition (real to machine)

To formalise, we introduce two sets: floating point numbers G and machine

numbers M:

Definition 1.1 (Floating point) We form the set G of normalised float-

ing point numbers with t-significant digits for basis B as follows:

G :=
{
g = M ·BE : M, E ∈ Z and M = 0 or Bt−1 ≤ |M | < Bt

}

using exponent E and mantissa M (M and E integers), where B > 1 and

t > 0 are natural numbers. ¤

The property Bt−1 ≤ |M | < Bt implies a normalised representation, where
no leading zeros occur in the used digits. Furthermore, this condition implies
a unique representation for each floating point number via mantissa and
exponent, i.e. the map γ : G→ Z2, g 7→ M, E becomes bijective.

Example 1.1 (Normalised Floats – decimal)

Firstly, we consider the set of decimal floats with 4-digits

G =
{
M · 10E : M = 0 or 103 ≤ |M | < 104

}
.

Hence we have for the mantissa: 1000 ≤ |M | ≤ 9999.

Examples for this representation:

19.25 = 1925 · 10−2, 0.004589 = 4589 · 10−6, . . . ¦

5

Example 1.2 (Normalised floats – dual)

Secondly, 7-digit, normalised set of duals:

G =
{
M · 2E : M = 0 or 26 ≤ |M | < 27

}
.

We transform 19.25 to dual system: notationally L ≡ 1

19.25 = 1 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 1 · 20 + 0 · 2−1 + 1 · 2−2

= L00LL.0L = L00LL0L · 2−L0 ¦

Next, machine numbers: Subset of floats, where the exponent is bounded.

Definition 1.2 (Machine numbers) The set M of machine numbers is

defined by

M :=
{
g = M ·BE ∈ G : α ≤ E ≤ β

}
.

for given integers α ≤ β. ¤

Consequences:

• M is finite.

• Quantities B, t, α, β are parameters fixed by implementation.

• Mantissa M and exponent E define (uniquely) the machine number.

• symmetry of M w.r.t. g = 0, i.e. g ∈M⇔ −g ∈M (same for G).

Characteristics for a given set of machine numbers:

σ := Bt−1 ·Bα smallest positive machine number

λ := (Bt − 1) ·Bβ largest machine number

Exponent overflow / underflow occurs, if computed values exceed the set

[−λ,−σ] ∪ {0} ∪ [+σ, +λ].

6

 0

Figure 1: Density of normalised machine numbers.

Resolution:

• machine numbers not equally distributed.

• relatively large gap occurs at 0.

• density reduces farther away from zero.

Formally, two succeeding floats g = M · BE and g′ = (M + 1) · BE exhibit

the relative distance (g′ − g)/g = 1/M . The largest relative distance

ρ := max{1/M : Bt−1 ≤ |M | < Bt} = 1/Bt−1 = B1−t

is referred to as resolution.

IEEE-Standard 754

Coding of M and E by IEEE-standard since 1984; Basis is B = 2 (dual).

There are several number formats: (a selection!)

bits bits bits
format sign exponent mantissa

4 byte - short real (single precision) 1 8 23

8 byte - long real (double precision) 1 11 52

10 byte - temp real (extended precision) 1 15 64

Hidden bit: Since all normalised dual representations have a leading L, we

obtain an additional digit for the resolution!

Characteristics for these arithmetics:

7

format σ λ ρ

short real 1.2 · 10−38 3.4 · 1038 1.2 · 10−7

long real 2.2 · 10−308 1.8 · 10308 2.2 · 10−16

temp real 3.4 · 10−4932 1.2 · 104932 1.1 · 10−19

Example 1.3 (Short real)

Here we have 1 sign digit, 1 byte = 8 bit for exponent, and 3 byte = 1 + 23 bit (including

the hidden bit) for mantissa.

Schematic storage: ± a1 a2, . . . , a8 b1, b2, . . . , b23 (sign, exponent, mantissa). ¦

Specials in IEEE-Standard:

±∞ larger/smaller than any real devision by zero

NaN (Not a Number), undefined, passed on invalid operation (∞−∞, 0/0)

Rounding

Since the set of machine numbers is finite, we cannot represent all real num-

bers exactly. Therefore we need to approximate the continuum R. How?

This problem occurs not only while reading data, also while computing.

Generally, exact results of elementary operations (+,−, ·, /) on G2 do not

belong to G.

The rounding function rd does the job:

Definition 1.3 (Round to nearest) Correct rounding to nearest is the

map rd : R→ G, which assigns to a real number x a floating point number g

such that

|rd(x)− x| ≤ |g − x| for all g ∈ G . ¤

Rounding rd is surjective, idempotent and monotone.

For fixed x, let gL denote the largest float, which is smaller or equal to x (left

neighbour) and gR smallest float, which is larger than x (right neighbour).

8

R

G
g gL R

gL gRMr

rd

Figure 2: Sketch of rounding procedure.

Furthermore, we define the center point rM = 1
2(gL + gR). Thus

rd(x) =

{
gL if x ≤ rM

gR if x ≥ rM

In the case x = rM , the correct round is not uniquely defined. IEEE-

Standard puts:

rd(rM) =

{
gL if gL has even mantissa

gR if gL has odd mantissa

For B = 2, this condition is equivalent to the question, if the last bit of gL

is equal to zero or one.

Further rounding modes: (let x ∈ R)

round down: x 7→ gL

round up: x 7→ gR

round towards zero: x 7→ gL, if x ≥ 0, x 7→ gR if x < 0

round away from zero: x 7→ gR, if x ≥ 0, x 7→ gL if x < 0

Rounding causes errors! We define

∆x := |rd(x)− x| absolute error

and

εx :=
∆x

|x| =
|rd(x)− x|

|x| relative error .

9

For the absolute error, we find

|rd(x)− x| ≤ 1
2 |gR − gL| = 1

2 |M ·BE − (M + 1) ·BE| = 1
2B

E

and for the relative error

|rd(x)− x|
|x| ≤ BE

2|M |BE
=

1

2|M | ≤
1
2B

1−t .

Thus the relative rounding error is bounded (from above) by half of the

resolution (of the arithmetic). Formally, it holds

rd(x) = x(1 + ε) with |ε| ≤ 1
2B

1−t, (1.1)

where ε depends on x.

Definition 1.4 (Machine precision) Using t significant digits, the ma-

chine precision is defined as

ε0 := 1
2B

1−t. ¤

Thus the machine precision is half times the resolution.

Integral recursion (Ex. 0.1) revisited

Under the above perspective, we investigate Ex. 0.1 again:

forward recursion: In = 1− nIn−1 for In = 1
e

∫ 1
0 xnex dx.

We perform a simple analysis: the start value I0 = 1
e

∫ 1
0 ex dx = e−1

e is

transcendent (i.e., only an infinite number of digits define the value exactly).

In our computation, we used Ĩ0 = rd(I0).

How does the input error ∆I0 = Ĩ0 − I0 propagates in this recursion?

For simplicity, we assume that the recursion is computed in exact arithmetic,

i.e., without further roundoff errors:

Ĩk = 1− k · Ĩk−1 for k = 1, 2,

10

Thus in the first two steps, we deduce the errors

∆I1 = Ĩ1 − I1 = (1− Ĩ0)− (1− I0) = (−1) ∆I0

∆I2 = Ĩ2 − I2 = (1− 2Ĩ1)− (1− 2I1) = −2∆I1 = (−2)(−1)∆I0.

By induction, it follows

∆In = Ĩn − In = (−1)n n! ∆I0.

Hence the input error ∆I0 is amplified by a factor of n! and oscillates. This

explains the results in Ex. 0.1 very well. In addition, one obtains that the

error in the backward recursion is damps by 1
n! .

Floating point operations

As simplification, we assumed in the analysis of the integral recursion that

the basic operations were performed without error. In practice, this is not

the case. For the elementary operations ¯ ∈ {+,−, ·, /}, we have

a, b ∈ G ; a¯ b ∈ G

i.e., we need to round the result.

Following Wilkinson (1958), one denotes by a ¯fl b the result of floating

point operations and demands for an ideal arithmetic:

a¯fl b = rd(a¯ b) for a, b ∈ G (1.2)

(i.e., floating point operations shall yield correct rounding of exact result).

This is IEEE-Standard 754 and it is realised in todays microprocessors.

From (1.2), we obtain

a¯fl b = (a¯ b)(1 + ε), where |ε| ≤ ε0 . (1.3)

One refers to (1.3) as strong hypothesis of roundoff errors; it is fulfilled by

any microprocessor with ideal arithmetic.

11

Property (1.3) is the basis for error analysis: here ε depends on arguments

a, b ∈ G, but the bound ε0 is known a priori, and enables estimates.

Remarks:

• In analysing floating point operations, we neglect overflow and under-

flow.

• Correct rounding arithmetic is obtained using a computation based on

t + 3 digits. (Two additional guard bits plus one sticky bit.)

• The elementary operations are implemented as microprograms.

One multiplication is twice as expensive as an addition.

Example addition (microprogram): choose B = 2, t = 5, and

3 = L.L000 · 20 and 0.09375 = L.L000 · 2−4 :

i) exponent adaption, i.e., add two hidden bits and shift in mantissa by increase

of smaller exponent: L.L000|00 · 20

0.000L|L0 · 20

ii) addition of mantissas: L.L000L|L0 · 20

iii) normalise (if necessary: mantissa shift)

iv) round down: L.L000L · 20

round up: L.L00L0 · 20

i.e., result: L.L00L0 · 20

Caution: By subtraction cancellation of leading digits may occur! (No

rounding necessary!)

1.2 Roundoff Error Analysis

An algorithm (computer program) in numerics is a sequence of elementary

operations, where the chronology is uniquely defined. In floating point

arithmetic, roundoff errors alter and falsify any intermediate results and

thus the final result.

12

The order of operations is crucial for error analysis, since floating point

arithmetic is not associative and is not distributive: i.e.,

a +fl (b +fl c) 6= (a +fl b) +fl c, a ·fl (b ·fl c) 6= (a ·fl b) ·fl c,

a +fl (b ·fl c) 6= (a ·fl b) +fl (a ·fl c).

Forward- vs. Backward-Analysis

How to proceed for roundoff error analysis? Forward analysis is self-evident:

that is, to compare floating point result with exact solution. Often this is

very complicated. Therefore the situation is interchanged, that is, (roughly)

Definition 1.5 (Backward Analysis) Let x denote input data, the exact

result be denoted as y(x) and the algorithm in floating point arithmetic yields

yfl(x). Now, backward analysis aims at the representation of the floating

point result yfl(x) as exact solution for (slightly) modified input data x̂:

yfl(x) = y(x̂)

(if possible). ¤

Backward analysis is standard.

Example 1.4 (Backward Analysis for +fl/·fl)
a +fl b = (a + b)(1 + α), exact for arguments: a(1 + α), b(1 + α),

a ·fl b = (a · b)(1 + β), exact for arguments: a
√

1 + β, b
√

1 + β . ¦

As an example, we investigate the roundoff error in the Horner-scheme.

Horner-Scheme

Task: Compute polynomial P at value x

P (x) = P (c0, c1, . . . , cn; x) = c0 + c1x + c2x
2 + . . . + cnx

n

13

with given coefficients c0, . . . , cn.

For a direct evaluation we need: n (ADD+MULT) plus all powers xk.

Following Horner, the evaluation is computed as

P (x) = (. . . ((cnx + cn−1) · x + cn−2) · x + · · ·+ c1) · x + c0 , (1.4)

using n (ADD+MULT) – furthermore the risk of overflow is much smaller.

This reads:

Algorithm 1.1 (Horner-Scheme)

The result y = P (x) is computed as:

y := cn;

for k = n− 1 : −1 : 0

y := y · x + ck;

end; ¦

For the roundoff analysis, we assume coefficients ci and value x to be exact.

Using the strong hypothesis (1.3) for the values of floating point arithmetic:

ỹ := cn;

for k = n− 1 : −1 : 0

ỹ := ((ỹ · x) · (1 + µk) + ck)(1 + αk);

end;

At the end, ỹ = c̃0 + c̃1x + . . . + c̃nx
n with perturbed coefficients c̃k

c̃k := ck · (1 + αk) · (1 + µk−1) · (1 + αk−1) · (1 + µk−2) · . . . · (1 + α0)

and αn := 0. Hence the value ỹ can be identified with the exact evaluation

of a ’slightly’ modified polynomial (at x).

The modification in coefficient c̃n is the largest. By linearisation, we can

approximate the product of factors 1 + ε: using |α|, |µ| ≤ ε0, we put

(1 + α) · (1 + µ)
.
= 1 + α + µ

14

neglecting the product α · µ (small numbers!). Thus (k > 1)

c̃n
.
= cn · (1 + µn−1 + αn−1 + . . . + µ0 + α0)

and for the absolute error in c̃n

∆cn = |c̃n − cn| .
= |µn−1 + αn−1 + . . . + µ0 + α0||cn| ≤ 2nε0|cn| .

And analogue for c̃k: ∆ck

.≤ (2k + 1)ε0|ck|.
Thus we have found the relation

P fl(c0, c1, . . . , cn; x) = P (c̃0, c̃1, . . . , c̃n; x).

In the view of backward analysis, the Horner-Scheme behaves well: with

small degree n, the error is moderate.

There is also a strict bound (i.e., without linearisation):

c̃k = ck(1 + ε) with |ε| ≤ 2kε0

1− 2kε0
for k = 1, . . . , n.

This roundoff error analysis is a priori: a hypothesis on the roundoff error

yields bounds for the global error. Since worst cases enter the rigorous

bounds, the observed error is often much smaller.

There are also a posteriori error bounds for an already numerically com-

puted approximation. For instance, a residual (of the computed solution)

might be computed using some higher precision.

1.3 Error propagation and condition

Here we investigate the influence of some uncertainty in the input data.

That is, we shift the focus from the algorithm to the problem itself. The

results have consequences for numerics and the error propagation (propa-

gation of roundoff errors):

15

1) solution procedure decomposed in a sequence of steps: roundoff error

in ith step enter as input errors the (i + 1)th step;

2) condition (problem inherent amplification of errors): yields gauge for

assessment of roundoff errors.

We abstractly characterise a problem as follows:

input data x = (x1, . . . , xn)
> ∈ D ⊂ Rn

result y = (y1, . . . , ym)> ∈ Rm

problem map ϕ : D→ Rm, which assigns to any (admissible) input

data a unique result: y = ϕ(x) = (ϕ1(x), . . . , ϕm(x))>

To solve this problem is meant to find/compute the value of ϕ at x. Now,

how sensitive is the (analytic) result y with respect to changes in the input

data x?

The differential error analysis investigates the partial derivatives of ϕi with

respect to the input data xj: ∂ϕi/∂xj, – this quantifies the sensitivity (of

ϕi) w.r.t. changes in the initial data.

Let ∆xi, i = 1, . . . , n denote the absolute perturbation, and %xi := ∆xi/xi

the relative quantity for component i. In linear approximation for ∆yi =

ϕi(x̃)− ϕi(x) and %yi = ∆yi/yi, we have

∆yi
.
=

n∑

j=1

∂ϕi

∂xj
∆xj (1.5)

%yi
.
=

n∑
j=1

xj

yi

∂ϕi

∂xj
%xj (1.6)

Ã indeed amplification factors!

16

Note on derivation: For n = m = 1, Taylor expansion yields

∆y = ϕ(x̃)− ϕ(x)

= ϕ(x) +
∂ϕ

∂x
(x)∆x +O((∆x)2)− ϕ(x)

.
=

∂ϕ

∂x
(x)∆x

%y =
∆y

y
.
=

∂ϕ

∂x
(x)

∆x

y

x

x
=

x

y

∂ϕ

∂x
(x)%x.

Corresponding to (1.5), there is a vector notation

∆y =
∂ϕ

∂x
·∆x

with the Jacobian matrix ∂ϕ
∂x ∈ Rm×n.

Quantity xj/yi · ∂ϕi/∂xj gauges the influence the relative error in xj to the

result yi. Analog quantity ∂ϕi/∂xj for the absolute error. These numbers

are referred to as condition numbers.

Definition 1.6 (Condition numbers) A problem is well-conditioned, if

small changes in ∆x, and %x yield small changes in ∆y and %y, respectively.

Otherwise it is ill-conditioned. As condition numbers, we use absolute and

relative variants (coordinate-wise and vectorial):∣∣∣∣
∂ϕi

∂xj

∣∣∣∣ ,

∥∥∥∥
∂ϕ

∂x

∥∥∥∥ ,

∣∣∣∣
xj

yi

∂ϕi

∂xj

∣∣∣∣ . ¤

Ã ’small’ is problem dependent.

Ã describe how much domain is stretched

Ã feature of the mathematical problem (see Fig. 3, Fig 4).

Also the elementary operations exhibit conditions. We obtain the absolute

errors:

∆(a± b) = ∆a±∆b (1.7)

∆(a · b) .
= b∆a + a∆b (1.8)

∆(a/b)
.
= ∆a/b− a∆b/b2 (1.9)

17

y

~yϕ

ϕ

x~

x

Figure 3: Sketch “well-conditioned”.

yϕ

x~

x

y~
ϕ

Figure 4: Sketch “ill-conditioned”.

and for relative errors (with %x = ∆x/x):

%(a± b) =
a

a± b
%a +

b

a± b
%b (1.10)

%(a · b) .
= %a + %b (1.11)

%(a/b)
.
= %a− %b (1.12)

We find: the relative condition for multiplication and division is 1. That

is, the operation may be called well-conditioned. For addition/subtraction,

the absolute conditions are small, the relative conditions are unbounded !

So-called cancellation poses a delicate situation: If a ± b ≈ 0, i.e. a and b

have the some common leading digits, then these digits disappear.

Example 1.5 An ill-conditioned problem cannot be amended by an algorithm.

18

s s

Figure 5: Computation of the intersection of lines

We investigate the intersection of two lines yi = aix + bi (i = 1, 2) in point s. Regarding

Fig. 5, on the left-hand side, small data changes in ai, bi produce small changes in s. On

the right-hand side, large changes arise even for small changes in the data – much harder

to located the intersection s. ¦

Condition plus roundoff error

If problem ϕ decomposes, then any subproblem has an own condition num-

ber. By the chain rule for ϕ = σ ◦ τ

∂ϕ

∂x
=

(
∂σ

∂z

)

z=τ(x)
· ∂τ

∂x
,

we obtain the following relation for the condition numbers:

condσ◦τ = condσ · condτ .

Notice, the total condition is independent of how the subproblems are

formed. Generally, the smallness of the total parameter condσ◦τ does not

guarantee, that both factors are small.

Often there are decompositions (algorithmic variants) with a large and small

factor. Roundoff errors, which can be interpreted as input errors in a step,

may cause such an algorithm to be useless.

ϕ(x) = σ(τ(x) + ∆τ) + ∆σ (1.13)

19

with errors ∆τ, ∆σ arising from roundoff errors in the evaluation of the

functions τ, σ. Considering a perturbance ∆x in the initial values, we obtain

by linearisation (with other ∆τ, ∆σ as in (1.13), but in the same order of

magnitude)

ϕ(x + ∆x) = σ(τ(x + ∆x) + ∆τ) + ∆σ
.
= σ(τ(x) + ∂τ

∂x(x)∆x + ∆τ) + ∆σ
.
= σ(τ(x)) + ∂σ

∂x(x)∂τ
∂x(x)∆x + ∂σ

∂x(x)∆τ + ∆σ

= ϕ(x) + ∂ϕ
∂x(x)∆x + ∂σ

∂x(x)∆τ + ∆σ

Error in Algorithm

A numerical algorithm ϕ̃ to compute of y = ϕ(x) is numerically more trust-

worthy than another algorithm, if the total influence of roundoff errors is

smaller. This leads to two further notations:

Definition 1.7 (Acceptable result) In the sense of backward analysis, a

numerically computed solution ỹ for initial data x is called acceptable, if it

can be interpreted as exact solution to modified data x̃ for given tolerance

(εx):

ỹ acceptable ⇔ ∃x̃ : ỹ = ϕ(x̃) and ‖x̃− x‖ ≤ ‖x‖εx or
‖x̃− x‖
‖x‖ ≤ εx

(Tolerance εx in the order of magnitude of machine precision ε0.) ¤

And in the overall

Definition 1.8 (Well behaved / Numerically stable algorithm)

An algorithm is said to be well behaved or numerically stable, if for any

input data x the computed (approximated) solution ỹ is acceptable. ¤

20

x
y

y

ϕ

~ϕ~

Figure 6: Sketch forward-analysis.

x

~x
~y

ϕ~

ϕ

Figure 7: Sketch backward-analysis.

Remarks

• Def. 1.7 can be weakened: the result is acceptable, if there exists y′

with ‖ỹ − y′‖ small and y′ is exact for data x̃.

(‖ỹ − y′‖ in the order of magnitude: {‖∂ϕ/∂x‖‖x‖ + ‖y‖}ε0, with

machine precision ε0.)

• Horner-Scheme and elementary operations are stable algorithms.

• Concatenation of two stable algorithms is sometimes not stable.

• For instability, a counterexample suffices. For stability, we have to

estimate both errors in the algorithm and roundoff errors.

21

• For well-conditioned problems, forward analysis is conceivable; for ill-

conditioned problems only backward analysis can be applied.

22

Chapter 2

Vectors and Matrices

2

Operations using vectors and matrices arise in many numerical methods,

especially for solving linear and nonlinear systems. In this section, we in-

troduce basic tools concerning vectors and matrices, which are important

in numerical mathematics.

2.1 Notations

A vectors in Rn or Cn is written as column

x ∈ Rn/Cn ⇔ x =




x1
...

xn


 with xi ∈ R/C. (2.1)

The transposed form represents a row, i.e. xT = (x1, . . . , xn).

Matrices are used to describe linear mappings Φ : Rn → Rm and Φ : Cn →
Cm, respectively, via Φ(x) = Ax using A ∈ Rm×n/Cm×n. The corresponding

notation is

A ∈ Rm×n/Cm×n ⇔ A =




a11 · · · a1n
...

...

am1 · · · amn


 with aij ∈ R/C. (2.2)

23

In the case m = n, the matrix is said to be quadratic of order n. We

will use the abbreviation M(m,n) for the set of matrices in Rm×n or Cm×n,

respectively.

The unit matrix or identity I ∈ M(n, n) is given by

I =




1 0
. . .

0 1


 . (2.3)

Diagonal matrices D ∈ M(n, n) exhibit the form

D =




d1 0
. . .

0 dn


 , (2.4)

where sometimes the abbreviation D = diag(d1, . . . , dn) is employed.

2.2 Determinant, Inverse, Eigenvalues

For square matrices A ∈ M(n, n), the determinant det A ∈ R/C can be

defined by

det A :=
∑

σ∈Sn

sign(σ) · a1σ(1) · . . . · anσ(n), (2.5)

where Sn is the set of all permutations on {1, . . . , n} and sign(σ) is the sign

of a special permutation σ.

The property det A 6= 0 implies that the rows as well as the columns of

A are linearly independent vectors and vice versa. In this case, the linear

mapping Φ(x) := Ax becomes bijective. Consequently, the inverse mapping

Φ−1 exists and is linear. Thus Φ−1(x) = A−1x involving a unique matrix

A−1 ∈ M(n, n), which is called the inverse of A. It holds

A · A−1 = A−1 · A = I. (2.6)

24

The inverse A−1 can be written in terms of determinants using A and sub-

matrices of A. Likewise, Cramer’s rule formulates the solution x = A−1b of

the linear system Ax = b applying determinants.

Further properties of the determinant are:

• det(A ·B) = (det A) · (det B) for all A,B ∈ M(n, n)

• det A−1 = (det A)−1 for all A ∈ M(n, n) with det A 6= 0

• det(αA) = αn det A for all A ∈ M(n, n) and α ∈ R/C

• det AT = det A for all A ∈ Rn×n, det AH = det A for all A ∈ Cn×n

• If U ∈ M(n, n) is an upper triangular matrix with elements u11, . . . , unn

on the diagonal, then it holds det U = u11 · . . . · unn.

The characteristic polynomial of a matrix A ∈ M(n, n) is defined as

pA(λ) := det(A− λI). (2.7)

The polynomial is of order n and can be written in the form

pA(λ) = (−1)n(λ− λ1) · . . . · (λ− λn). (2.8)

The zeros λ1, . . . , λn ∈ C are called eigenvalues, where recurrences are possi-

ble. For each eigenvalue λ, an eigenvector v ∈ Cn exists, which is defined by

the property Av = λv. The determinant of A is given by det A = λ1 · . . . ·λn.

Attention: The computation of the determinant via approaches like (2.5)

is numerically unstable. Consequently, the inverse matrix is never com-

puted by determinants and linear systems are never solved by Cramer’s

rule. Moreover, the use of determinants for these problems would demand

a huge computational effort.

If we introduce another basis {b1, . . . , bn} (bi ∈ Rn/Cn) of the space Rn/Cn

in terms of an original basis, then the arising basis transformation can be

25

described by the matrix

B =



| |
b1 · · · bn

| |


 , (2.9)

where det B 6= 0 holds. Let x and y be the representation in the old and new

basis, respectively. Then it follows y = B−1x and x = By. Accordingly, a

linear mapping transforms via

Φ(x) = Ax ⇒ Φ(y) = B−1ABy. (2.10)

In general, similarity transformations are defined by

Ã = B−1AB with det B 6= 0 (2.11)

and the matrices A, Ã are called similar. Similarity transformations gen-

erate an equivalence relation in M(n, n), i.e. A ∼ Ã, if a matrix B exists

satisfying (2.11). In particular, the eigenvalues of A are invariant in a sim-

ilarity transformation, since the characteristic polynomial does not change

pÃ(λ) = det(Ã− λI) = det(B−1AB − λB−1B)

= det(B−1(A− λI)B) = (det B−1) · (det(A− λI)) · (det B)

= det(A− λI) = pA(λ).
(2.12)

Furthermore, a matrix A ∈ M(n, n) is called diagonalisable, if a basis con-

sisting of eigenvectors exists. Consequently, D = B−1AB holds, where D is

a diagonal matrix containing the eigenvalues.

2.3 Special matrices

In this subsection, we introduce special classes of square matrices and dis-

cuss their properties.

Definition 2.1 A ∈ Rn×n is called a symmetric matrix, if A = AT , i.e.

aij = aji, holds. A ∈ Cn×n is called a hermitian matrix, if A = AH , i.e.

aij = aji, holds.

26

Definition 2.2 A ∈ Rn×n is called an orthogonal matrix, if A−1 = AT

holds. A ∈ Cn×n is called a unitary matrix, if A−1 = AH holds.

Definition 2.3 A ∈ Rn×n is called a positive definite matrix, if xTAx > 0

holds for all x ∈ Rn with x 6= 0. A ∈ Rn×n is called a positive semi-definite

matrix, if xTAx ≥ 0 holds for all x ∈ Rn.

The definition of negative (semi-)definite matrices is analogue via replacing

>,≥ by <,≤.

Orthogonal/unitary matrices have the advantage that the inverse can be

directly obtained. Furthermore, they play a role in the context of the scalar

product

〈x, y〉 := xTy x, y ∈ Rn or 〈x, y〉 := xHy x, y ∈ Cn. (2.13)

Thereby, the crucial property of a unitary matrix Q is

〈x, y〉 = xHy = xHQ−1Qy = xHQHQy = (Qx)HQy = 〈Qx,Qy〉 (2.14)

and analogue for orthogonal matrices. Thus the linear mapping Φ(x) := Qx

preserves the length of vectors as well as the angle between two vectors.

For symmetric/hermitian matrices, a basis of corresponding eigenvectors

exists, i.e. these matrices are diagonalisable. Furthermore, the involved

eigenvalues are always real numbers. In addition, the eigenvectors can be

chosen orthogonal with respect to the scalar product, which yields an or-

thogonal/unitary matrix Q of basis vectors

D = QTAQ or D = QHAQ. (2.15)

This property allows to characterise the positive definiteness of a symmetric

matrix. We rearrange

xTAx = xTQDQTx = (QTx)TD(QTx). (2.16)

Since det QT 6= 0, it follows {x ∈ Rn : x 6= 0} = {QTx ∈ Rn : QTx 6= 0}.
Thus the matrix is positive definite, if and only if all eigenvalues are positive.

27

Likewise, the matrix is positive semi-definite, if and only if all eigenvalues

are non-negative. An according result follows for negative (semi-)definite

matrices. If a positive as well as a negative eigenvalue exist, then the matrix

is called indefinite. Positive and negative definite matrices A satisfy det A 6=
0, because

det A = 0 ⇒ ∃x 6= 0 : Ax = 0 ⇒ ∃x 6= 0 : xHAx = 0. (2.17)

Thus corresponding linear systems have a unique solution.

2.4 Norms

Definition 2.4 A function ‖ · ‖ : Cn → R is called a (vector) norm, if the

following three properties are satisfied.

1. ‖x‖ > 0 for all x ∈ Cn with x 6= 0 (positive definite)

2. ‖αx‖ = |α| · ‖x‖ for all α ∈ C and x ∈ Cn (homogeneity)

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Cn (subadditivity)

The same definition holds for the space Rn by specialisation.

All norms, which are defined on the same space Cn are equivalent in the

following sense: For each pair of norms ‖ · ‖a, ‖ · ‖b there are constants

c1, c2 > 0 satisfying

c1‖x‖a ≤ ‖x‖b ≤ c2‖x‖a for all x ∈ Cn. (2.18)

A class of norms is given by

‖x‖p :=

(
n∑

j=1

|xj|p
)1/p

for 1 ≤ p ≤ ∞. (2.19)

28

The following three special cases are most commonly used.

‖x‖1 =
∑n

j=1 |xj| sum norm

‖x‖2 =
√∑n

j=1 |xj|2 Euclidian norm

‖x‖∞ = maxj=1,...,n |xj| maximum norm

(2.20)

The Euclidean norm can be written in terms of vector operations via ‖x‖2 =√
xHx, i.e. using the scalar product 〈x, y〉 := xHy.

Definition 2.5 A function ‖ · ‖ : M(m,n) → R is called a matrix norm, if

the following properties are satisfied.

1. ‖A‖ > 0 for all A ∈ M(m,n) with A 6= 0 (positive definite)

2. ‖αA‖ = |α| · ‖A‖ for all α ∈ C and A ∈ M(m,n) (homogeneity)

3. ‖A + B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈ M(m,n) (subadditive)

4. In case of m = n:

‖A ·B‖ ≤ ‖A‖ · ‖B‖ for all A,B ∈ M(n, n) (submultiplicative)

Accordingly, all matrix norms defined on the same space M(m,n) are equiv-

alent.

The matrix norm ‖ · ‖M on M(m,n) is said to be consistent with the vector

norms ‖ · ‖a on Rn/Cn and ‖ · ‖b on Rm/Cm, if

‖Ax‖b ≤ ‖A‖M · ‖x‖a for all A ∈ M(m,n), x ∈ Rn/Cn. (2.21)

Definition 2.6 Given arbitrary vector norms ‖ · ‖a on Rn/Cn and ‖ · ‖b on

Rm/Cm, the subordinate matrix norm lub : Rm×n/Cm×n → R is defined by

lub(A) := max
x6=0

‖Ax‖b

‖x‖a
(2.22)

(lub: least upper bound).

29

An equivalent expression is obtained via

max
x6=0

‖Ax‖b

‖x‖a
= max

x6=0

∥∥∥∥A
x

‖x‖a

∥∥∥∥
b

= max
‖y‖a=1

‖Ay‖b. (2.23)

The subordinate matrix norm indicates the maximum magnification of a

vector x by multiplication with A. The four properties of a matrix norm

can be verified. Furthermore, the subordinate norm is consistent with the

vector norms

‖Ax‖b =
‖Ax‖b

‖x‖a
· ‖x‖a ≤ lub(A) · ‖x‖a for all x 6= 0. (2.24)

Moreover, the subordinate norm is the smallest matrix norm, which is con-

sistent with the vector norm, i.e.

‖Ax‖b ≤ ‖A‖ · ‖x‖a for all A, x ⇒ lub(A) ≤ ‖A‖ for all A. (2.25)

Considering square matrices (m = n), usually ‖ · ‖a = ‖ · ‖b is presumed. In

this context, another quantity plays a role.

Definition 2.7 Let λ1, . . . , λn ∈ C be the eigenvalues of a matrix A ∈
M(n, n), then the spectral radius of A is given by

ρ(A) := max
j=1,...,n

|λj|. (2.26)

Let v be an eigenvector corresponding to an eigenvalue λ, it follows using

an arbitrary vector norm and a consistent matrix norm

|λ| · ‖v‖ = ‖λv‖ = ‖Av‖ ≤ ‖A‖ · ‖v‖ ⇒ |λ| ≤ ‖A‖. (2.27)

Consequently, it holds ρ(A) ≤ ‖A‖ for all subordinate matrix norms. The

spectral radius itself is not a matrix norm, for example, matrices A 6= 0 with

all eigenvalues equal to zero exist. Nevertheless, for fixed A and ε > 0, a

special vector norm exists, whose subordinate norm satisfies ‖A‖ ≤ ρ(A)+ε.

30

The subordinate matrix norms corresponding to the common vector norms

(2.20) are

‖A‖1 = maxj=1,...,n

∑n
i=1 |aij| column-sum norm

‖A‖2 =
√

ρ(AHA) spectral norm

‖A‖∞ = maxi=1,...,n

∑n
j=1 |aij| row-sum norm

(2.28)

The column-sum and the row-sum norm can be computed easily. On the

contrary, the computation of the spectral norm demands solving an eigen-

value problem. However, the spectral norm is known a priori for some

matrix classes. Orthogonal/unitary matrices A exhibit ‖A‖2 = 1.

A matrix norm on M(m,n), which is no subordinate norm for any vector

norm, is given by

‖A‖S :=
√∑m

i=1
∑n

j=1 |aij|2 (Schur norm). (2.29)

Nevertheless, this matrix norm is consistent with the Euclidean vector norm.

In contrast to the subordinate matrix norm ‖ · ‖2, the Schur norm is easy

to compute.

Definition 2.8 The condition of a matrix A ∈ M(n, n) with det A 6= 0 is

given by

κ(A) :=

max
‖x‖=1

‖Ax‖
min
‖x‖=1

‖Ax‖ , (2.30)

which depends on the chosen norm.

The condition specifies the amount of deformation corresponding to the

unit sphere with respect to the used norm. The favourable case κ(A) = 1

is fulfilled by orthogonal/unitary matrices using the Euclidean norm.

If det(A) = 0 and A 6= 0, it follows κ(A) = ∞ in any norm, since an x with

Ax = 0 but ‖x‖ = 1 exists. If det(A) 6= 0, an equivalent expression of the

31

condition is obtained by employing A−1. We have

1

min
‖x‖=1

‖Ax‖ = max
‖x‖=1

1

‖Ax‖ = max
x 6=0

‖x‖
‖Ax‖ = max

y 6=0

‖A−1y‖
‖y‖ = ‖A−1‖, (2.31)

where the subordinate matrix norm is used. Hence it follows

κ(A) = ‖A‖ · ‖A−1‖. (2.32)

Furthermore, we conclude

1 = ‖I‖ = ‖AA−1‖ ≤ ‖A‖ · ‖A−1‖ = κ(A) (2.33)

and thus 1 is the optimal value.

2.5 Elementary matrices

Now we give a list of so-called elementary matrices. In numerical linear al-

gebra, algorithms can often be described by successive operations involving

these matrices. However, these processes represent just a theoretical tool.

In the following, the vectors and matrices may be real as well as complex.

Scaling:

We consider a diagonal- or scaling matrix

D = diag(d1, d2, . . . , dn). (2.34)

operation on vectors: (Dx)j = djxj, j = 1, . . . , n.

operation on matrices:

(DA)ij = diaij, ith row scaled with di, i = 1, . . . , n.

(AD)ij = aijdj, jth column scaled with dj, j = 1, . . . , n.

inverse: D−1 = diag(d−1
1 , d−1

2 , . . . , d−1
n) (dj 6= 0, j = 1, . . . , n)

32

similarity transformation: A 7→ DAD−1, aij 7→ (di/dj)aij, i, j = 1, . . . , n

Transposition:

Transposition matrices Pij are special permutation matrices. They agree to

the unit matrix I except for the four entries (i, i), (i, j), (j, i), (j, j), where

i, j ∈ {1, . . . , n} represent a certain choice.

Pij :=




1
. . .

1

0 1

1
. . .

1

1 0

1
. . .

1




(2.35)

operation on vectors: Pijx interchanges components i and j.

operation on matrices:

PijA interchanges rows i and j.

APij interchanges columns i and j.

inverse: P−1
ij = Pij (involution)

similarity transformation: A 7→ PijAPij interchanges rows and columns.

In particular:
aii aij

aji ajj
7→ ajj aji

aij aii
’crosswise’

Since Pij is symmetric Pij = P T
ij , Pij is orthogonal due to P−1

ij = Pij. Hence

33

Pij exhibits the optimal condition number κ2(Pij) = 1.

Permutation:

Let σ : {1, 2, . . . , n} → {1, 2, . . . , n} be bijective, i.e. σ represents a per-

mutation of the set {1, 2, . . . , n}. The corresponding permutation matrix is

obtained by a permutation of the rows of the identity matrix

I =



− e1

> −
...

− en
> −


 −→ Pσ :=



− eσ(1)

> −
...

− eσ(n)
> −


 . (2.36)

operation on vectors: Pσx permutes components of x.

operation on matrices:

PσA permutes rows of A.

APσ permutes columns of A.

inverse: P−1
σ = Pσ−1 = P>

σ

Each permutation matrix can be written as a product of transposition ma-

trices, i.e.

Pσ =
L∏

l=1

Pi(l),j(l). (2.37)

Row/column operations:

The elementary operation of adding a multiple of one row/column to an-

other row/column can be described by the matrix

Nij(α) :=




1
. . .

α . . .

1


 . (2.38)

34

Nij(α) is identical to the unit matrix except for the component (i, j), which

contains the element α.

operation on vectors:

Nij(α)x : xi 7→ xi + α · xj α-times comp. j added to comp. i

operation on matrices:

Nij(α)A: α-times row j added to row i

ANij(α): α-times column i added to column j

inverse: Nij(α)−1 = Nij(−α)

Similarity transformation are not of interest here.

On the other hand, products of the matrices Nij(α) are important, since

they arise in the Gaussian elimination.

n∏

i=1,i 6=j

Nij(αi) =




1 α1
.

. . . αi−1
. . .

αi+1
. . .

... . . .

αn 1




(2.39)

Thereby, the succession of the products does not influence the result. Fur-

35

ther successive products yield
∏
i>1

Ni1(αi1)
∏
i>2

Ni2(αi2) . . .
∏

i>n−1

Ni,n−1(αi,n−1)

=




1

α21
. . .

... . . .

αn,1 αn,n−1 1


 .

(2.40)

2.6 BLAS package

The software package BLAS (Basic Linear Algebra Subprograms) was de-

veloped by J. Dongarra, G. Golub and other american scientists, which have

been working on portability and standardisation of numerical software since

the seventies.

The BLAS package includes exclusively elementary operations using vectors

and matrices. Numerical algorithms can be composed of these established

components. Each subroutine of BLAS is adapted a benchmark of a com-

mon computer architecture. Further optimisations with respect to a special

architecture are possible. BLAS is implemented in FORTRAN but used in

many connections to other programming languages by corresponding inter-

faces.

BLAS is subdivided into three levels:

Level 1 BLAS

These subroutines incorporate vector operations of complexity O(n) (re-

alised by a for-loop). BLAS-1 subroutines are dedicated to scalar com-

puters, where optimised versions exist, for example, by using Assembler

programs. For vector computers, the BLAS-1 subroutines can be realised

by one or several vector operations.

Examples for BLAS-1 subroutines:

36

SDOT, DDOT: xTy → β scalar product

SSCAL, DSCAL: α, x → αx scaling a vector

Level 2 BLAS

The BLAS-2 subroutines are defined for constructing a portable software,

which performs optimally on many computers. The time-consuming parts

are isolated in just a few optimised subroutines. BLAS-2 subroutines ex-

ecute matrix-vector operations and thus employ typically O(n2) floating

point operations.

Examples for BLAS-2 subroutines:

STRSV, DTRSV: L−1x → x lin. sys. with triangular matrix on vector

SGEMV, DGEMV: αAx + βy → y common matrix-vector product

Level 3 BLAS

Using new computer architectures (e.g. several processors, hierarchical

memory structures), the BLAS-2 subroutines are only partly suitable. Con-

sequently, the BLAS-3 subroutines include matrix-matrix operations, which

exhibit the complexity O(n3) (three for-loops). Based on BLAS-3, the soft-

ware LAPACK has been developed, which comprehends the scope of the

packages EISPACK and LINPACK, i.e. the linear algebra operations for

dense matrices.

Examples for BLAS-3 subroutines:

STRSM, DTRSM: L−1X → X lin. sys. with triangular matrix on matrix

SGEMM, DGEMM: αAB + βC → C common matrix-matrix product

37

Chapter 3

Direct Methods for Linear Systems

3

Linear systems occur in many numerical algorithms: e.g. for systems of

ordinary differential equations, for systems of partial differential equations,

for optimisation problems. Therefore linear systems need to be solved daily

many million times.

Here we address Gaussian elimination, LU-decomposition and Cholesky as

the standard numerical algorithms for linear systems. Furthermore we dis-

cuss the sensitivity of linear systems and the method of least squares for

data fitting.

3.1 Gaussian Elimination and LU-Decomposition

Given a linear system of equations:

A · x = b (3.1)

with real matrix A ∈ Rn×n, right-hand side b ∈ Rn and unknowns x ∈ Rn.

Considering a regular matrix A, i.e. det(A) 6= 0, the unique solution is

x = A−1b.

And Cramer’s rule yields

xi = det(Ai,b)/ det(A), i = 1, . . . , n .

38

But these results from linear algebra are not suitable for a realisation on a

computer. Important principles:

Principle 1: Never use Cramer’s rule to compute solution of A · x = b!

Principle 2: Never compute (numerically) the inverse A−1 explicitly!

Principle 3: Never use det(A)!

To solve (3.1), we use Gaussian Elimination and LU-Decomposition.

A special case are lower and upper triangular matrices:

A = (aij) = (aij = 0 for j > i) A = (aij = 0 for i > j)

Here, we can compute the solution x successively: forward substitution for

lower tr. matrices and backward substitution for upper tr. matrices.

Algorithm 3.1 (Forward Substitution)

for i = 1 : n

xi :=
(
bi −

i−1∑

j=1

aij xj

)
/aii ;

end ¦

Algorithm 3.2 (Backward Substitution)

for i = n : −1 : 1

xi :=
(
bi −

n∑
j=i+1

aij xj

)
/aii ;

end

39

¦

Explanation of names: Forward subst. calculates sequence x1, x2, . . . , xn,

whereas backward subst. calculates sequence xn, xn−1, . . . , x1.

Now, the idea of Gaussian elimination (LU-decomposition) is to transform

to a triangular form. This is done with (at most) n−1 transformation steps.

Symbolically:

= ⇔ =

*

0

0

.

. ⇔ =

*

0

0

.

.

0

*

0
*

.
⇔

· · · ⇔ =

How does this work? – Perform steps j := 1, . . . , n− 1:

1. if necessary swap jth-row with any row: j+1, . . . , n

chosen diagonal elements ajj are called pivots

2. swap jth-column with any column: j+1, . . . , n

(Ã descreases roundoff errors)

3. subtract suitable multiple of jth row from row i = j+1, . . . , n:

define factor lij
lij = aij/ajj

Ã transform matrix and right-hand side

(Ã lij form lower triangular matrix)

Algorithm 3.3 (Gaussian Elimination without pivoting)

for j = 1 : n− 1

40

for i = j + 1 : n

for k = j + 1 : n

aik := aik − (aij/ajj) ajk; (∗)
end

bi := bi − (aij/ajj) bj;

end

end

for i = n : −1 : 1

xi :=
(
bi −

n∑
j=i+1

aij xj

)
/aii ;

end ¦

In step j (outer loop j), a zero column is generated below ajj and the

problem reduces. In the next step only the block j +1, . . . , n is worked on.

If all pivots are nonzero, we can compute a solution via Gaussian elimination

for systems of arbitrary large size.

In the successive generation of the upper triangular matrix, zeros are not

explicitly computed.

Example 3.1 A simple computation:


1 −1 0 1

−1 6 −3 0

0 −3 3.6 0


 Ã




1 −1 0 1

0 5 −3 1

0 −3 3.6 0


 Ã




1 −1 0 1

0 5 −3 1

0 0 1.8 0.6




backward substitution yields: u3 = 1
3 , u2 = 2

5 , u1 = 7
5 . ¦

The marked row (∗) in Alg. 3.3 defines the elimination step. It is equivalent

to

A := Nij(−lij) · A (3.2)

with lij = aij/ajj and the elementary matrix Nij (see above, Sect. 2) – the

sum of (−lij) × jth row and ith row.

41

Notice, in the jth step the leading elements in any row ai,1, . . . , ai,j−1 (i =

j, . . . , n) are already put to zero, by the previous elimination steps. Thus

these have no influence in the product Nij(−lij) · A.

In the overall the algorithm can be described by a product of elementary

matrices: for the resulting upper triangular matrix U , we obtain

U = Nn,n−1(−ln,n−1) · . . . ·N21(−l21) · A .

Since Nij(α)−1 = Nij(−α), we have

A = N21(l21) · . . . ·Nn,n−1(ln,n−1) · U ,

and from the previous section, we know that the product yields a lower

triangular matrix L = (lij):

N21(l21) · . . . ·Nn,n−1(ln,n−1) =

(∏
i>1

Ni1(li1)

)
· . . . ·

(∏
i>n−1

Ni,n−1(li,n−1)

)
= L

Furthermore, all diagonal elements are equal to 1, i.e. lii = 1 for all i. A

triangular matrix with this property shall be called normed.

That is,

Theorem 3.1 (LU-Decomposition) The Gaussian elimination

(Alg. 3.3) is equivalent to the triangular decomposition: A = L·U , including

a normed lower triangular L and an upper triangular U .

The decomposition is unique, the sequence of operations is not. The unique-

ness follows from

A = L1U1 = L2U2 ⇒ L−1
2 L1 = U1U

−1
2 .

Since L−1
2 L1 is a normed lower and U1U

−1
2 an upper triangular matrix, we

obtain

L−1
2 L1 = U1U

−1
2 = I ⇒ L1 = L2, U1 = U2.

42

Now having computed A = L ·U , we solve for x in two steps: Ax = LUx =

L(Ux) = b

1.) Solve L · y = b by forward substitution:

for i = 1 : n yi = bi −
i−1∑
j=1

lijyj (3.3)




1 0

l21
. . .

...
. . .

ln1 · · · ln,n−1 1



·




y1

...

...

yn




=




b1

...

...

bn




2.) Solve U · x = y by backward substitution:

for i = n : −1 : 1 xi =
(
yi −

n∑
j=i+1

uijxj

)
/uii (3.4)




u11 · · · u1n

. . .
...

0 unn


 ·




x1

...

xn


 =




y1

...

yn




These operations coincide with Alg. 3.3. Both ways are equivalent. The

LU -decomposition is computed as:

Algorithm 3.4 (LU-Decomposition)

for j = 1 : n

ljj = 1 ;

for k = j : n

ujk := ajk ;

end

for i = j + 1 : n

lij := aij/ujj ;

for k = j + 1 : n

aik := aik − lijujk ;

43

end

end

end
¦

In an implementation, the factors L and U are stored in one matrix, actually

replacing the entries of A.

Often the linear system (3.1) has to be solved with a set of different right-

hand sides: b, b′, etc. Then the LU-decomposition is performed once, and

forward/backward substitution is done for all right-hand sides. For this rea-

son, there are usually two subroutines (modules) for Gaussian elimination.

Complexity

How many operations are necessary for LU-decomposition and substitu-

tions?

We count operations (multiplications, usually a · b + c)

n−1∑

k=1

k2 = 1
6(n− 1)n(2n− 1)

.
=

n3

3
LU-decomposition

n−1∑

k=1

k = 1
2(n− 1)n

.
=

n2

2
per substitution.

Hence the decomposition needs the mayor part of the work. The substitu-

tions need n2 operations like a matrix-vector multiplication.

Pivoting

In Alg. 3.3 and Alg. 3.4, we assumed inherently that pivots ajj or ujj are

nonzero. This is the case for symmetric positive definite and strictly diag-

onal dominate matrices, but not in general.

That is, we need pivoting .

44

Example 3.2 In the matrix

A =

(
0 1

1 2

)
,

we need simply to interchange rows. ¦

There is a further complication by small pivots. These yield large roundoff

errors.

The choice of the largest absolute value in the actual column is referred to as

partial pivoting . If it is the element aij (i > j), then we have to interchange

row i and row j.

In the complete pivoting, we look for the largest absolute element in the

whole remainder. Swapping of of rows and columns is then necessary. (More

effort, less common.)

The following result ensures that we are on the correct track: LU-decom-

position does only fail for singular A (in exact arithmetic).

Theorem 3.2 For any regular matrix A, a permutation matrix P and a

decomposition

P · A = L · U
with normed lower triangular L and upper triangular U exist. It is possible

to choose P , such that all entries of L have modulus less or equal 1.

Proof:

The elimination of all elements in the jth column below the pivot is described by a multi-

plication with the matrix

Kj =
∏
i>j

Nij(−lij) = I + qj · ej
T with qj := (0, . . . , 0,−lj+1,j, . . . ,−ln,j)

T .

Since the product of these matrices commutes, we obtain

K−1
j =

∏
i>j

Nij(lij),

45

which represents exactly the jth column of the matrix L. Without pivoting , the LU -de-

composition is given by

U = Kn−1 · . . . ·K1 · A or L · U = K−1
1 · . . . ·K−1

n−1 · U = A.

Interchanging row i and row j can be described by a multiplication with a transposition

matrix Pij (see previous section). Using partial pivoting, an element ak1,1 with |ak1,1| > |ai,1|
for all i is chosen. It holds ak1,1 6= 0, since a column with only zeros implies a singular

matrix. The interchange of rows and the following elimination can be written as

A Ã K1 · P1,k1 · A =




ak1,1 ∗ · · · ∗
0
... A′

0




using the transposition matrix P1,k1 and a matrix K1 with a structure like above. The

choice of the pivot guarantees |lj,1| = |aj,1/ak1,1| ≤ 1 for j = 2, . . . , n. Since it holds

det(A) = ak1,1 · det(A′), the remaining matrix A′ is regular, too.

Likewise, the following elimination steps yield

Kn−1 · Pn−1,kn−1 ·Kn−2 · Pn−2,kn−2 · . . . ·K1 · P1,k1 · A = U

with a upper triangular U . The product of transposion and elimination matrices can be

modified. Using the abbreviation Pi := Pi,ki
, it holds for j < i

PiKjPi = I + q̃jej
T with q̃j = Piqj,

which represents a lower triangular matrix with the same structure as Kj. Since P−1
i = Pi,

we can expand

Kn−1 · (Pn−1 ·Kn−2 · Pn−1)︸ ︷︷ ︸
=:K̃n−2

· (Pn−1 · Pn−2 ·Kn−3 · Pn−2 · Pn−1)︸ ︷︷ ︸
=:K̃n−3

· . . . · (Pn−1 · . . . · P2 ·K1 · P2 · . . . · Pn−1)︸ ︷︷ ︸
=:K̃1

· (Pn−1 · . . . · P1)︸ ︷︷ ︸
=:P

·A = U.

Thus defining K̃i := Pn−1 · · ·Pi+1KiPi+1 · · ·Pn−1 and P := Pn−1 · · ·P1, we obtain

Kn−1 · K̃n−2 · . . . · K̃1 · P · A = U.

The matrices K̃i exhibit the same structure as the matrices Ki (just elements in the ith

column beyond the pivot are modified). Thus

L := K̃−1
1 · . . . · K̃−1

n−2 ·K−1
n−1

represents a normed lower triangular matrix. The matrix P describes the permutation of

the rows. ¤

46

Cholesky-Decomposition

For the special class of symmetric positive definite (s.p.d.) matrices, which

occur often in applications, there is no pivoting necessary.

To understand this, we investigate the first elimination step. Let A be a

s.p.d. matrix, then e>1 Ae1 = a11 > 0, and the first diagonal element is

feasible as pivot. Therefore we obtain

A =

(
a11 v>

v B

)
Ã K1 · A =

(
a11 v>

0 B′

)
.

The remainder B′ is composed as

B′ = B − vv>

a11
,

which is symmetric again.

Notice:

vv> =




v1 · v1 . . . v1 · vn

...
...

vn · v1 . . . vn · vn




Now, for showing definiteness, we put

x :=

(
−v>y/a11

y

)
with arbitrary y ∈ Rn−1, y 6= 0

and obtain

Ax =

(
0

B′y

)
⇒ 0 < x>Ax = y>B′y .

Thus by induction:

Theorem 3.3 Let A be symmetric positive definite. Then the LU-decom-

position yields in each step a symmetric positive definite remainder and the

diagonal element can be used as pivot.

47

Moreover, it can be shown that a pivoting with respect to numerical stability

(choice of large elements) is not necessary for s.p.d. matrices (see later).

In addition (to no pivoting), it is possible to half the computational effort

due to symmetry. That will be to define symmetric factors. To this end,

notice that

A = L · U = LD D−1U︸ ︷︷ ︸
Ũ

, D := diag(u11, . . . , unn) .

yields a normed upper triangular matrix Ũ := D−1U . Thus Ũ> represents

a normed lower triangular matrix. By symmetry, we have

LDŨ = A = A> = Ũ>DL> .

Since the LU-decomposition is unique, it holds Ũ> = L, and we have the

so-called rational Cholesky-Decomposition

A = L ·D · L> . (3.5)

Since A is s.p.d. and det L 6= 0, we know (L−> := (L>)−1 = (L−1)>)

0 < (L−>ei)
>(LDL>)L−>ei = ei

>Dei = di = uii.

Thus we can define the root of D as

D1/2 := diag(
√

u11, . . . ,
√

unn).

Now the Cholesky-Decomposition reads

A = L̂ · L̂> , L̂ := L ·D1/2 (3.6)

with lower triangular matrix L̂, which is not normed in general.

Computation: With L̂ = (λ̂ij) and L̂> = (
ˆ̂
λij), we have

aii =
i∑

k=1

λ̂ik
ˆ̂
λki ⇒ |λ̂ii|2 = aii −

i−1∑

k=1

|λ̂ik|2 (> 0)

j > i : aji =
i∑

k=1

λ̂jk
ˆ̂
λki ⇒ λ̂ji =

(
aji −

i−1∑

k=1

λ̂jk λ̂ik

)
/λ̂ii

48

Computation is uniquely defined for λ̂ii > 0. And L̂ can be obtained

columnwise (i = 1, . . . , i = n).

Algorithm 3.5 (Cholesky-Decomposition)

for i = 1 : n

λ̂ii :=
(
aii −

∑i−1
k=1 |λ̂ik|2

)1/2

for j = (i + 1) : n

λ̂ji :=
(
aji −

∑i−1
k=1 λ̂jk λ̂ik

)
/λ̂ii

end

end
¦

The effort reduces to about n3/6 operations (using symmetry) in comparison

to about n3/3 for LU-decomposition.

The property

aii −
i−1∑

k=1

|λ̂ik|2 > 0 ⇒ √
aii ≥ |λ̂ik| for all k 6= i

shows that all entries of L̂ are small in comparison to the respective diag-

onal elements in A. Thus the Cholesky-decomposition exhibits very good

stability properties.

3.2 Condition and Roundoff error

The aim of this section is two answer the following questions: Defines the

linear system a well-conditioned problem? How do roundoff errors influence

the LU-decomposition?

First the condition: We compare the solution x of Ax = b (det(A) 6= 0)

with the solution of the perturbed problem

Ãx̃ = b̃, where Ã = A + ∆A, x̃ = x + ∆x, b̃ = b + ∆b. (3.7)

49

We assume that the perturbation ∆A is small enough, such that A + ∆A

is still a regular matrix. This is the case, if

‖A−1‖ · ‖∆A‖ < 1 ⇔ ‖∆A‖ <
1

‖A−1‖
holds for an arbitrary matrix norm, which is consistent to some vector
norm.

Proof:

From (A + ∆A)x = 0, we have x = −A−1∆Ax and thus

‖x‖ ≤ ‖A−1‖ · ‖∆A‖ · ‖x‖ ⇒ (1− ‖A−1‖ · ‖∆A‖) · ‖x‖ ≤ 0.

Hence ‖∆A‖ < 1/‖A−1‖ implies x = 0 and A + ∆A is regular. ¤

Now, starting from (A + ∆A)(x + ∆x) = b + ∆b, we have (using Ax = b)

∆x = A−1(∆b−∆A · x−∆A ·∆x)

and in the norm

‖∆x‖ ≤ ‖A−1‖ · (‖∆b‖+ ‖∆A‖ · ‖x‖+ ‖∆A‖ · ‖∆x‖).

Consequently, we obtain

‖∆x‖ ≤ ‖A−1‖
1− ‖A−1‖ · ‖∆A‖ · (‖∆b‖+ ‖∆A‖ · ‖x‖) .

Thus we have found an upper bound on the change in solution x for per-

turbation in ∆A, ∆b (of the problem).

Now we can use the condition number cond(A) = ‖A‖ · ‖A−1‖ (see previous

section). Furthermore, if ‖∆A‖ ≤ εA‖A‖ and ‖∆b‖ ≤ εb‖b‖ holds for some

sufficiently small εA > 0, then we find

‖∆x‖ ≤ ‖A−1‖
1− ‖A−1‖ · εA · ‖A‖ · (εb · ‖b‖+ εA‖A‖ · ‖x‖) .

50

and thus

‖∆x‖
‖x‖ ≤ cond(A)

1− εA · cond(A)
·
(

εb · ‖b‖
‖A‖ · ‖x‖ + εA

)
.

Using ‖b‖ = ‖Ax‖ ≤ ‖A‖ · ‖x‖ yields the final result

‖∆x‖
‖x‖ ≤ (εA + εb) · cond(A)

1− εA · cond(A)
. (3.8)

The condition cond(A) ≥ 1 is indeed the amplification factor, which de-

scribes how changes in the data transform the solution. Assuming εA =

εb = ε, we perform the rough estimate

‖∆x‖
‖x‖ ≤ 2ε · cond(A)

1− ε · cond(A)
≈ ε · cond(A) (3.9)

just to observe the order of magnitude in the relative error.

Notice, as always for condition numbers, here we do not investigate roundoff

errors, but the inherent problem features! (For propagation of errors)

The user must estimate the condition number and decide whether or not

cond · ε ¿ 1 hold. Only in that case, it is feasible to compute an accurate

approximation of x.

Formula (3.9) enables a rough backward analysis of algorithms for com-

puting the solution of linear systems. Let ε0 ≈ 10−t (t digits) be the

used machine precision. Gaussian elimination on a computer yields an ap-

proximation x̃ to the linear system Ax = b. Following backwark analysis,

we see this approximation as the exact solution of the system Ãx̃ = b̃

with ‖∆A‖ ≤ εA‖A‖ and ‖∆b‖ ≤ εb‖b‖. Since the result was calculated

on a computer, we assume εA ≈ εb ≈ ε0 (this is not always the case).

Let cond(A) ≈ 10c with an integer c ≥ 0. Consequently, we have

‖∆x‖
‖x‖ ≈ ε0 · cond(A) ≈ 10c−t,

i.e. we loose about c correct digits in the computed result x̃.

51

Residual

For an approximation x̃ to the solution x, we define the corresponding

residual r := b − Ax̃. Is there a way to assess the quality of x̃ from the

knowledge of r?

The idea: “small residual r ⇒ small difference x− x̃” is wrong!

Correct is the estimate:

‖x− x̃‖ ≤ cond(A)
‖r‖
‖A‖ , (3.10)

which follows from x − x̃ = A−1r. Assuming standardised A, i.e. ‖A‖ =1,

the condition number gives the correct insight – small ‖r‖ yields arbitrary

large errors for a larger and larger condition number.

Can we obtain something else from the residual? From r = b−Ax̃, we have

Ax̃ = b− r ,

that is, x̃ is the exact solution to the right-hand side b− r. If ‖r‖ is of same

order of magnitude as ∆b (uncertainty in b), then the result is acceptable

(cf. Def. 1.7).

An additional application of r is present in a posteriori iteration: an en-

hancement of the approximation x̃ by a combination of single and double

precision.

Roundoff errors in decompositions

Having studied conditions (of the problem), which are independent of the

realisation on a computer, we turn to the influence of roundoff errors. A

short glance.

Let A = LU be the exact decomposition (without pivoting). Considering

roundoff errors we obtain factors L̃ and Ũ . For an entry of L, we have the

52

computation

lik =
(
· · · ((aik − li1 u1k)− li2 u2k)− · · · − li,k−1 uk−1,k

)
/ukk .

For the strong hypothesis (1.3), this transforms

l̃ik =
((
· · · ((aik − l̃i1 ũ1k(1 + µ1))(1 + σ1)− · · ·
− l̃i,k−1 ũk−1,k(1 + µk−1)

)
(1 + σk−1)/ũkk

)
· (1 + δ) .

The coefficients marked by ˜ are already computed with roundoff errors.

Using backward analysis (Sautter 1971), one can prove that the numerical

approximation x̃ is an exact solution to modified coefficient matrix Ã (and

previous right-hand side b):

Ã · x̃ = b .

For Ã we have the estimate

|Ã− A| ≤ |L̃| · |Ũ | · (3ε + ε2) , ε :=
nε0

1− nε0
, (3.11)

where |A| denotes the componentwise modulus.

The bound (3.11) is not sufficient to have the stability of Gaussian elim-

ination. We would further need: |L̃| · |Ũ | ≈ |A|. But there are indeed

decompositions, such that

|L̃| · |Ũ | À |L̃ · Ũ | ≈ |L · U | = |A| ,
where (3.11) yields a large difference |Ã− A|.
That is, the aim of pivoting is, to find a decomposition such that the product

|L̃| · |Ũ | is small. Partial pivoting yields |lij| ≤ 1 (Th.3.2), but for the entries

uij exists only the bound

|uij| ≤ 2n−1a0 with a0 := max
1≤i,j≤n

|aij| ,

which is most times too pessimistic. (But there are example, where this

estimate is sharp!)

53

For special matrices (e.g. tridiagonal), much better estimates can be given.

Total pivoting yields slightly better bounds, but still today there are no

strategies to minimise |L̃| · |Ũ |.

Concluding remarks to decompositions

• Gaussian elimination / LU-decomposition with partial pivoting is THE

algorithm to solve linear systems.

• Gaussian elimination and LU-decomposition represent identical meth-

ods even including roundoff errors. They yield solutions with ’small’

residuals r = Ax− b, but this does not allow to conclude on ‖x̃− x‖.
• For known condition number cond(A), we can roughly estimate the

precision of the solution via (3.8) setting ε to machine precision.

Rule of thumb: cond(A) = 10t ⇒ t digits are lost!

• For the computation of the condition, there are special algorithms. Ex-

act computation demands O(n3) operations, whereas rough estimates

can be computed cheaply.

• Rescaling A 7→ D1AD2 with diagonal matrices D1, D2 may reduce the

condition significantly. (The aim is to put all values of A in approxi-

mately the same order of magnitude.)

• Numerical Software:

LINPACK (first) library for numerical linear algebra (1979); based

on BLAS Level 1 and 2. C- and FORTRAN Codes.

Special subroutines for LU-decomposition are: SGEFA, SGESL (or DGEFA, DGESL

for double precision). SGECO estimates the condition.

LAPACK (successor) uses in addition BLAS Level 3.

Subroutines for LU-decomposition: SGETRF, SGETRS (or DGETRF, DGETRS for

double precision).

54

Internet: http://elib.zib.de/netlib/master/readme.html

3.3 Linear Least Squares

In this section, we address the solution of overdetermined linear systems.

This will apply the method of least squares – dating back to C. F. Gauss

(about 1800), where he minimised measurement errors. A special descom-

position A = Q · U with orthogonal Q will is suitable for this task.

Problem description

A linear system with more equations than unknowns is called overdeter-

mined :

Ax = b with A ∈ Rm×n, x ∈ Rn, b ∈ Rm and m > n. (3.12)

Such problems occur in data fitting: here measurement data shall be used
to calibrate a mathematical model. Thus x denotes the unknown model
parameters, b measurements, and A describes the relation of both.

Example 3.3 (Radio-active decay) Given a radio-active substance (e.g. from medical

application), which consists of 2 isotopes with constants λ1, λ2 for the decay. At times

tj, j = 1, . . . , m the radio activity b = (b1, . . . , bm)> is measured.

We look for the initial concentration x1 and x2 of the two isotopes.

To solve this problem, we first need the functional relation of measured data bj and the

concentrations x1, x2. In this example, it is the exponential: The radio-active substance

shows the decay y(t) = x exp(λt).

Consequently, we have for both substances

y(t) = x1 exp(λ1t) + x2 exp(λ2t) .

At the measurement time tj we obtain the relation

y(tj) = x1 exp(λ1tj) + x2 exp(λ2tj) , j = 1, . . . , m

55

which reads in matrix notation (x ∈ R2, b̃ ∈ Rm, A ∈ Rm×2)

b̄ = A · x with b̄ :=




y(t1)
...

y(tm)


 , A :=




exp(λ1t1) exp(λ2t1)
...

...

exp(λ1tm) exp(λ2tm)


 , x :=

(
x1

x2

)
.

In addition, we do not have the exact data b̄, but measurements b (which will be used to

track back the initial concentration). That is, we need to solve

A · x = b ,

which is over-determinant.

Since also the measurements are faulty, we do not expect to find x, such that A · x = b is

indeed fulfilled. Therefore we are satisfied to find a minimum of the problem

‖A · x− b‖→ min! ¦

From the example (radio-active decay), to find an exact solution x to (3.12)

is useless, since it will often not exist. Therefore we demand that the residual

r(x) := b− Ax is as small as possible in some applied norm.

The Euclidian norm is specially suitable, since it can be written using vector

operations (‖x‖2 =
√

x>x). Accordingly, the linear least squares method

reads:

Find x̂, such that ‖r(x̂)‖2 ≤ ‖r(x)‖2 for all x ∈ Rn. (3.13)

For the exact (but unknown) data b̄ := Ax, problem (3.13) is equivalent to

m∑
i=1

(b̄i − bi)
2 → min! (3.14)

– that is, the contradictive data are fit by a method of least squares (see

Fig. 8, where the least squares are visualised for Ex. 3.3).

We summarise the problem of linear least squares :

Given data:

56

t t tt t1 2 3 4

b/y

y(t)

Figure 8: Linear least squares for y(t) = x1e
λ1t + x2e

λ2t

• measurements (tj, bj), j = 1, . . . , m

• model (ansatz) functions gi(t), i = 1, . . . , n

• functional relation y(t) = x1g1(t) + . . . + xngn(t)

Find: the (linear) coefficients x1, . . . , xn,

F (x1, . . . , xn) :=
m∑

i=1

(y(ti)− bi)
2 → min!

Normal Equations

The solution of the linear least squares problem (3.12) is given by the normal

equations . For a deduction, we can consider geometry or analysis:

Geometrical Approach:

Let ŷ ∈ Rm be the orthogonal projection of b onto the image of A (Im (A))

– considering the Euclidian scalar product 〈·, ·〉. Then an x̂ ∈ Rn exists

satisfying Ax̂ = ŷ. If A has full rank n, then x̂ is unique. We estimate using

the Euclidian norm ‖ · ‖2:

‖Ax− b‖2 = ‖Ax− b + Ax̂− Ax̂‖2

= ‖Ax̂− b‖2 + ‖Ax− Ax̂‖2 + 2〈Ax̂− b, A(x− x̂)〉
= ‖Ax̂− b‖2 + ‖Ax− Ax̂‖2

≥ ‖Ax̂− b‖2.

57

A x

b
b−Ax

Im(A)

Rm

y

Figure 9: Normal equations: the smallest residual r(x̂) := b − Ax̂ is orthogonal to the

columns of A

Consequently, x̂ solves the least squares problem

‖Ax̂− b‖2 ≤ ‖Ax− b‖2 f.a. x ∈ Rn ⇔ 〈Ax̂− b, Az〉 = 0 f.a. z ∈ Rn.

The conclusion from the right-hand to the left-hand property is shown above. Vice versa,

the left-hand property implies

‖Ax− Ax̂‖2 + 2〈Ax̂− b, A(x− x̂)〉 ≥ 0 f.a. x ⇔ ‖Az‖2 + 2〈Ax̂− b, Az〉 ≥ 0 f.a. z.

If 〈Ax̂− b, Az∗〉 6= 0 holds for some z∗, then setting z = µz∗ for µ ∈ R yields

µ2‖Az∗‖+ 2µ〈Ax̂− b, Az〉 ≥ 0.

For µ → 0 with appropriate sign, the left-hand side becomes negative, i.e. a contradiction

arises.

From orthogonality of the residual r = b−Ax̂ and Im(A), we conclude that

x̂TATAx = bTAx for all x ∈ Rn,

and therefore x̂ fulfills the normal equations

ATAx̂ = AT b. (3.15)

Notice, the equivalence to ATr(x̂) = 0.

58

Minimisation Approach:

To demand (3.13) is equal to minimising the function r(x)Tr(x), that is,

F (x) = r(x)Tr(x) = xTATAx− 2xTAT b + bT b → min!

Necessary for a minimum of a function F : Rn → R at x̂ is the condition

grad F (x̂) = 0. The derivative of F with respect to the unknowns x yields

grad F (x)> =

(
∂F (x)

∂x1
, . . .

∂F (x)

∂xn

)>
= 2ATAx− 2AT b .

Componentweise:

∂F (x)

∂xj
=

∂

∂xj

(
xTATAx + 2xTAT b

)
= eT

j ATAx + xTATAej − 2eT
j AT b

= 2
([

ATAx
]
j
− [

AT b
]
j

)

From that we have (3.15).

The normal equations are not only necessary, they are also sufficient! Write

r(x) = r(x̂) + A(x− x̂), then we deduce

r(x)Tr(x) = r(x̂)Tr(x̂) + 0 + (x− x̂)TATA(x− x̂) ≥ r(x̂)Tr(x̂) ,

i.e., x̂ is a minimum. Equality holds only for A(x− x̂) = 0.

The next theorem gives the according conclusion.

Theorem 3.4 Every solution x̂ of the linear least squares problem (3.13)

satisfies the normal equations (3.15). The minimiser x̂ unique, if and only

if the columns of A are linear independent, i.e., rank(A) = n. The minimal

residual r(x̂) is always unique.

In the case rang(A) = n, ATA is positive definite, and therefore the normal

equations exhibit a unique solution x̂. This case we assume in the following.

59

Condition of the least squares problem

Linear least squares problem may be more sensitive to perturbations in the

data than linear systems. Without proof, we quote the following results:

We consider the linear least squares problem with matrix A (rank(A) = n)

and vector b. A QR-decomposition of A shall be given by

A = Q

(
R

0

)
. (3.16)

Let Ã = A + ∆A and b̃ = b + ∆b denote the modified data. If the pertur-

bances are small, then we obtain w.r.t. the Euclidean norm (by neglecting

higher-order terms)

‖∆x‖2

‖x‖2
≤̇ cond(R)

‖∆A‖
‖A‖ + cond(R)2 ‖r‖

‖Ax‖
‖∆A‖
‖A‖

+cond(R)
‖b‖
‖Ax‖

‖∆b‖
‖b‖ .

(3.17)

Remark that the subordinate matrix norm is defined for rectangular matri-

ces, too. We define the angle ϕ via

tan ϕ =
‖r‖
‖Ax‖ , 0 ≤ ϕ < π

2 .

Then it follows

‖∆x‖2

‖x‖2
≤̇ cond(R)

‖∆A‖
‖A‖ + cond(R)2 tan ϕ

‖∆A‖
‖A‖

+cond(R)
√

1 + tan2 ϕ
‖∆b‖
‖b‖ .

(3.18)

For small ϕ, i.e. cond(R) tan ϕ ≤ 1, the condition of the problem is deter-

mined by cond(R). For ϕ → π
2 , the number cond(R)2 is dominating, which

may result in an ill-conditioned problem. Remark that the discussion above

considers the least squares problem and not a special algorithm to solve it.

60

For comparison, we observe the normal equations to solve the problem.

Using (3.16), we obtain w.r.t. the Euclidean norm

cond(A>A) = cond(R>R) = cond(R)2.

Hence the condition number of the normal equations is always dominated

by the factor cond(R)2.

Computation

The cheapest way to compute the solution x̂ is via the normal equations

(3.15). One can combine the computation of ATA and the Cholesky-

decomposition, as well as the the computation of AT b and the forward

substitution.

For m = n, it holds cond(ATA) = cond(A)2 w.r.t. the Euclidean norm.

Therefore this strategy is quite imprecise. But, the factor cond(A)2 is

somehow problem inherent. A posteriori iteration can enhance the results

(significantly). But one has to be careful using Cholesky-decomposition!

Example 3.4 Given matrix A

A =




1 1 1

ε 0 0

0 ε 0

0 0 ε


 ⇒ A>A =




1 + ε2 1 1

1 1 + ε2 1

1 1 1 + ε2




Which rank of AT A is analytically computed, which rank is obtained for ε = 10−5 and

machine precision ε0 = 6 · 10−8? The exact computation yields rank(AT A) = 3. Using

ε = 10−5 and ε0 = 6 · 10−8 yields fl(1 + ε2) = 1 and therefore rank(fl(AT A)) = 1, i.e., the

normal equations are singular.

Another way to solve the least squares problem is standard: It is based on

orthogonal eliminations.

For an orthogonal matrix Q ∈ Rm×m holds:

‖r(x)‖2 = ‖Q · r(x)‖2 = ‖Q · b−Q · A · x‖2

61

the norm of the residual is unchanged.

If we assume, that we can choose Q, such that Q · A is a regular upper

triangular matrix R ∈ Rn×n and a block of zeros 0 ∈ Rm−n×n,

Q · A =

(
R

0

)
,

then the linear least squares problem can be rewritten as:

‖Q · b−Q · A · x‖2 =

∥∥∥∥∥

(
c

d

)
−

(
R · x

0

)∥∥∥∥∥
2

→ min !

Since ∥∥∥∥∥

(
c

d

)
−

(
R · x

0

)∥∥∥∥∥

2

2

= ‖c−R · x‖2
2 + ‖d‖2

2

the minium in x̂ can only be attained if

‖c−R · x̂‖2
2 = 0 ⇔ R · x̂ = c .

The solution x̂ of the least squares problem is then obtained by a simple

backward substitution.

Are there such orthogonal transforms, which can be constructed and stable

be computed? The answer is YES.

Householder Transformation and QR-Decomposition

The matrix

T := I − 2 · v · vH

with v ∈ Cm and ‖v‖2 = 1 is called a reflection.

62

v

p x

−p

s

Tx=s−p

Figure 10: Geometric interpretation of reflection T .

Scheme for T :

T =




1− 2v2
1 −2v1v2 . . . −2v1vn−1 −2v1vn

−2v2v1 1− 2v2
2 . . . −2v2vn−1 −2v2vn

. . .

−2vn−1v1 −2vn−1v2 . . . 1− 2v2
n−1 −2vn−1vn

−2vnv1 −2vnv2 . . . −2vnvn−1 1− 2v2
n




An arbitrary vector x ∈ Cm can be decomposed in x = p + s with p :=

(vHx)v parallel to v and s := x− p orthogonal to v.

The matrix T reflects the parallel part p on s,

T · (s + p) = T · (s + (vHx)v) = (I − 2vvH) · (s + (vHx)v) = s− p .

The reflection T has the following properties:

(i) T is hermitian (in real: symmetric), TH = T

63

(ii) T is involutory, T−1 = T

(iii) T is unitary (in real: orthogonal).

Instead of a normed vector v, we can define T as

T := I − uuH/κ , κ :=
1

2
uHu

with u ∈ Cm/{0}.
The operation of T on vector x:

y = T · x = x− uuHx/κ

needs no matrix vector multiplication! First, form the scalar product σ :=

uHx/κ and then y := x− σu. Analog for the operation on matrices

T · A = A− u(uHA/κ) , each column as before.

The matrix A is not necessary quadratic.

In our application (for least squares), one has to deal with a special case. T

and u are to be determined, such that the operation on given x is a multiple

of the first unit vector e1

T · x = y = −ζe1 =




−ζ

0
...

0


 .

The following choice does the job:

ζ :=

{
‖x‖2x1/|x1| if x1 6= 0

‖x‖2 if x1 = 0

u := x + ζe1 = (x1 + ζ, x2, . . . , xm)T (3.19)

κ := xHx + ‖x‖2 · |x1|
T := I − uuH/κ

This reflection T is then called Householder transformation.

64

Theorem 3.5 (Householder transformation) The Householder trans-

form T from (3.19) reflects x onto Tx = −ζe1 = (−ζ, 0, . . . , 0)T .

Proof: Exercise. ¤

Now, a sequence of Householder transformations can be used to transform

matrix A to an upper triangular form.

Step 1: For x in (3.19) choose first column of A ∈ Cm×n and form T1. Then

T1A =




−ζ1 ? · · · ?

0
...

0

a
(1)
2 · · · a

(1)
n


 .

The first column reduces and all others are transformed.

Step 2: Apply Householder transformation of dimension m− 1 to the first col-

umn of the remaining matrix.

This step can be described by using Householder transformation T2 ∈
Cm×m, where the first component of u is put to zero. Thus the opera-

tion of T2 keeps the first row and column in T1A unchanged:

T2T1A =




−ζ1 ? ? · · · ?

0 −ζ2 ? · · · ?

0
...

0

0
...

0

a
(2)
3 · · · a

(2)
n




.

After n steps all columns are reduced and A is transformed in an upper

triangular matrix and a zero block:

Tn · . . . · T1 · A =

(
R

0

)
and A = T1 · . . . · Tn

(
R

0

)
= Q ·

(
R

0

)

65

With Q := T1 · . . . · Tn one has the so-called QR-Decomposition of A.

The product Q = T1 · . . . · Tn of Householder transformations is as well

unitary or orthogonal: QHQ = I.

That is, we have reached the aim: we can solve the linear least squares

problem via QR-decomposition (notice QT instead Q):

‖b− Ax‖2
2 = ‖QT b−QTAx‖2

2

=

∥∥∥∥∥

(
c

d

)
−

(
R · x

0

)∥∥∥∥∥

2

2

= ‖c−R · x‖2
2 + ‖d‖2

2

The solution x̂ of the least squares is deduced by a backward substitution

Rx̂ = c.

For implementation, one has be take care, that matrices Tj are not formed

explicitly, but just the operations on A are computed. In the jth step, Tj

is applied to A(j−1) = Tj−1 . . . T1A and b(j−1) = Tj−1 . . . T1b. Since Tj =

I − uju
T
j /κj, we have the computation

A(j−1) 7→ A(j) = TjA
(j−1) = A(j−1) − ujy

T
j , yT

j := uT
j A(j−1)/κj .

Complexity: In the jth step we need

(n− j + 1)(m− j + 1) additions/multiplications for uT
j A(j−1)

(n− j + 1)(m− j + 1) additions/multiplications for ujy
T
j

(the first j − 1 components of uj are zero).

In total
n∑

j=1

2(n− j + 1)(m− j + 1) ≈ mn2 − n3

3

66

operations. For m À n this is the double as for Cholesky-decomposition

and normal equations.

Remarks

• In the special case m = n, the QR-decomposition is an alternative to

LU-decomposition (the zero block vanishes). If A has complete rank,

then QR-decomposition yields the solution of the linear system Ax =

b. The effort is 2/3n3 operations (multiplications), approximately the

double of the LU-decomposition. For stability reasons, one applies

from time to time indeed QR-decomposition.

• For positive diagonal entries rii > 0, i = 1, . . . , n, the QR-decomposi-

tion is unique.

• Pivoting: Businger/Golub (1965) have introduced a technique for the

rank deficient case (i.e., if zero columns occur as first column of the

remaining part).

• Instead of using Householder transformations, we can obtain the QR-

decomposition by Givens-Rotations.

67

Chapter 4

Iterative Methods for Linear Systems

4

In this section, we discuss the numerical solution of linear systems

Ax = b, A ∈ Rn×n, det A 6= 0, x, b ∈ Rn (4.1)

by means of iterative methods. Since an LU-decomposition of A demands

O(n3) floating point operations, the direct solving becomes extremely costly

for large n. In practical applications, large matrices A are typically sparse,

i.e. just a few elements are not equal to zero. To exploit the sparsity,

special algorithms for LU-decomposition try to minimise the number of fill-

ins (non-zero numbers created during elimination) by permutations of rows

and columns using a restricted pivoting. Since floating point operations are

realised only for non-zero elements in these algorithms, such direct sparse

solvers are suitable for 500 ≤ n ≤ 50000. In the following, we introduce

iterative methods, which are successfully applied for significantly larger di-

mensions n. The computational effort of one step must not be much larger

than a matrix-vector-multiplication (where the sparsity is considered and

operations including zeros are omitted).

Motivation for iterative methods:

For cond(A) ≈ 1, Gaussian elimination on a computer yields an approxi-

68

mation x̃ for x∗ = A−1b with

‖x̃− x∗‖
‖x∗‖ ≈ ε0 ≈ 10−16

in some norm. In practice, an accuracy

‖x̃− x∗‖
‖x∗‖ ≈ 10−4

is often sufficient, for example, if the exact solution of the linear system

is only an approximation of another problem. Hence the idea is to use an

alternative method, which is less accurate (ε ≈ 10−4 instead of ε ≈ 10−16)

but needs significantly lower computational effort (O(n2) instead of O(n3)).

4.1 Illustrative example

We consider the Dirichlet problem (special boundary-value problem of an

elliptic partial differential equation) for a function u : Ω → R, involving the

unit-square Ω := {(x, y) : 0 < x, y < 1}, with u ∈ C2, i.e.

−∆u = −uxx − uyy = f(x, y), (x, y) ∈ Ω

u(x, y) = 0, (x, y) ∈ ∂Ω
(4.2)

with predetermined function f : Ω → R, f ∈ C0. Now the partial deriva-

tives are discretised on a uniform grid Ωh using the step size h := 1/(M +1)

for M ∈ N
Ωh := {(xi, yj) = (ih, jh) : i, j = 1, . . . , M}. (4.3)

Symmetric differences of second order yield an approximation for ui,j =

u(xi, yj)

−ui−1,j − 2ui,j + ui+1,j

h2 − ui,j−1 − 2ui,j + ui,j+1

h2
.
= f(xi, yj) (4.4)

or equivalent using fi,j = f(xi, yj)

4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1 = h2fi,j (4.5)

69

for i, j = 1, . . . , M . We arrange the unknowns and the right-hand side in

the form

u = (u1,1, u2,1, . . . , uM,1, u1,2, . . . , u1,M , . . . , uM,M)T

b = h2(f1,1, f2,1, . . . , fM,1, f1,2, . . . , f1,M , . . . , fM,M)T ,
(4.6)

which results in the linear system Ax = b of dimension n = M 2. The matrix

A exhibits the structure



4 −1

−1
. . .

. . .

. . .
. . . −1

−1 4

−1

. . .

. . .

−1

−1

. . .

. . .

−1

4 −1

−1
. . .

. . .

. . .
. . . −1

−1 4

. . .

. . .
. . .

−1

. . .

. . .

−1

−1

. . .

. . .

−1

4 −1

−1
. . .

. . .

. . .
. . . −1

−1 4




. (4.7)

The matrix A is sparse, because each row contains at most five non-zero

elements. Moreover, A is symmetric and positive definite. However, a

Cholesky-decomposition A = LLT would create a large number of fill-ins,

i.e. L is not sparse. On the contrary, matrix-vector-multiplications using A

are relatively cheap, since just non-zeros elements have to be considered.

4.2 Classical iterative methods

A classical iterative method for the problem (4.1) features the form

xk+1 = Φ(xk), k = 0, 1, 2, . . . (4.8)

for given starting value x0. In classical methods, the function Φ remains

the same in all steps. On the contrary, further types of iterative methods

70

use different functions Φk in each step. We assume that the exact solution

x∗ of (4.1) is the unique fixed point of the iteration (4.8).

A classical iterative method is produced by the choice of a matrix B ∈ Rn×n,

det B 6= 0 using the splitting

Bx + (A−B)x = b ⇒ Bxk+1 + (A−B)xk = b, (4.9)

which represents a linear system with solution xk+1 and thus it holds

xk+1 = xk −B−1(Axk − b) = (I −B−1A)xk + B−1b. (4.10)

To compute xk+1, we require a matrix-vector-multiplication with respect to

A and we have to solve a linear system including the matrix B. The iteration

matrix I −B−1A is used exclusively for the analysis of convergence.

In this context, the matrix B shall have two properties:

1. Linear systems involving the matrix B are cheap to solve, which results

in a low computational effort of the iteration.

2. The matrix B is a reasonable approximation of A, i.e. B contains

essential information of A, which ensures the convergence of the itera-

tion.

Theorem 4.1 (Convergence of classical methods) The iterative tech-

nique (4.10) is convergent for any starting value, if and only if it holds

ρ(I −B−1A) < 1. (4.11)

Sufficient for the convergence of (4.10) using any starting value is the prop-

erty

‖I −B−1A‖ < 1, (4.12)

where ‖ · ‖ is the subordinate matrix norm corresponding to an arbitrary

vector norm.

71

Proof:

Considering the error fk := xk − x∗ (x∗ = A−1b) and using

xk = (I −B−1A)xk−1 + B−1b

x∗ = (I −B−1A)x∗ + B−1b,

we obtain the recursion

fk = (I −B−1A)fk−1 ⇒ fk = (I −B−1A)kf 0, k = 0, 1, 2,

Let (4.10) be convergent, i.e. lim fk = 0. Given an eigenvalue λ of I − B−1A, we set f 0

to the corresponding eigenvector. Thus it holds fk = λkf 0 and the convergence implies

|λ| < 1.

Vice versa, let ρ(I − B−1A) < 1. For the special matrix I − B−1A and a given ε > 0, a

vector norm ‖ · ‖ε exists such that the corresponding subordinate matrix norm satisfies

‖I −B−1A‖ε ≤ ρ(I −B−1A) + ε.

Therefore we obtain

‖(I −B−1A)k‖ε ≤ ‖I −B−1A‖k
ε ≤

(
ρ(I −B−1A) + ε

)k
= µk

involving µ < 1 for small ε. Hence lim(I −B−1A)k = 0 and lim fk = 0 holds for all f 0.

If λ is an eigenvalue of a matrix C ∈ Rn×n and v a corresponding eigenvector, then it holds

|λ| · ‖v‖ = ‖λv‖ = ‖Cv‖ ≤ ‖C‖ · ‖v‖ ⇒ |λ| ≤ ‖C‖

and thus ρ(C) < ‖C‖ for any matrix norm, which is consistent to some vector norm. Hence

‖I −B−1A‖ < 1 implies ρ(I −B−1A) < 1 and the method is convergent owing to the first

part of the theorem. ¤

In particular, the proof shows the estimate

‖xk+1 − x∗‖ ≤ ‖I −B−1A‖ · ‖xk − x∗‖ (4.13)

for an arbitrary vector norm and subordinate matrix norm. Thus the prop-

erty ‖I − B−1A‖ < 1 implies global linear convergence in the used norm.

The speed of convergence using the method (4.10) increases, the smaller the

norm of the iteration matrix becomes. The following theorem illustrates a

statement, which is independent from the applied matrix norm.

72

Theorem 4.2 (Speed of convergence) In the iterative method (4.10),

the error fk = xk − x∗ satisfies

sup
f0 6=0

lim sup
k→∞

k

√
‖fk‖
‖f 0‖ = ρ(I −B−1A) (4.14)

using an arbitrary vector norm ‖ · ‖.

Proof :

Let σ denote the left-hand side of (4.14). By choosing f 0 as eigenvector corresponding to

an eigenvalue with |λ| = ρ(I −B−1A), we see σ ≥ ρ(I −B−1A). For given ε > 0, a vector

norm ‖ · ‖ε exists such that the subordinate matrix norm yields

‖I −B−1A‖ε ≤ ρ(I −B−1A) + ε.

Since all norms are equivalent in Rn, we obtain constants C1, C2 > 0 with

C1 · ‖x‖ ≤ ‖x‖ε ≤ C2 · ‖x‖ for all x ∈ Rn.

For arbitrary f 0 6= 0, it follows that

‖fk‖ ≤ 1
C1
‖fk‖ε = 1

C1
‖(I −B−1A)kf 0‖ε

≤ 1
C1
‖I −B−1A‖k

ε‖f 0‖ε

≤ C2

C1
(ρ(I −B−1A) + ε)

k ‖f 0‖
or

k

√
‖fk‖
‖f 0‖ ≤

k

√
C2

C1

· (ρ(I −B−1A) + ε
)
.

Since lim k
√

C2/C1 = 1, we obtain k ≤ ρ(I −B−1A) + ε for arbitrary ε > 0, which implies

σ ≤ ρ(I −B−1A). ¤

In the following, we introduce the prominent classical methods, which arise

in view of the splitting

A = D + L + U, (4.15)

where D is a diagonal matrix including the diagonal of A and L,U contain

the lower and upper triangular part (without diagonal) of A, respectively.

73

Jacobi method

A simple iterative method is generated by choosing B = D in (4.10). We

assume aii 6= 0 for all i = 1, . . . , n, which implies det B 6= 0. For each

component i = 1, . . . , n, the formula (4.10) results in

xk+1
i =

1

aii


bi −

∑

j 6=i

aijx
k
j


 . (4.16)

Thereby, each component can be calculated separately.

If the diagonal of A represents the crucial part of the whole matrix, then

the Jacobi method is convergent.

Definition 4.1 The matrix A satisfies the strong row sum criterion, if it

holds

|aii| >
∑

j 6=i

|aij| for i = 1, . . . , n. (4.17)

The matrix A satisfies the strong column sum criterion, if it holds

|ajj| >
∑

i6=j

|aij| for j = 1, . . . , n. (4.18)

Both criteria imply the convergenge of the Jacobi method by Theorem 4.1.

From condition (4.17), we obtain

‖I −B−1A‖∞ = max
i=1,...,n

1

|aii|
∑

j 6=i

|aij| < 1 (4.19)

and, from condition (4.18), it follows

‖I −B−1A‖1 = max
j=1,...,n

1

|ajj|
∑

i6=j

|aij| < 1. (4.20)

Demanding additional properties, the convergence of Jacobi’s method can

also be guaranteed for weak sum criteria (replace > by ≥ in (4.17),(4.18)).

74

Gauss-Seidel method

Now we apply more information from the matrix A by considering B =

D + L. Thus the linear system corresponding to a triangular matrix has

to be solved, which can be done directly by forward substitution in case of

aii 6= 0 for all i = 1, . . . , n. For each component i = 1, . . . , n, we obtain the

formula

xk+1
i =

1

aii

(
bi −

∑
j<i

aijx
k+1
j −

∑
j>i

aijx
k
j

)
. (4.21)

Hence the components have to be computed successively.

The conditions (4.17) and (4.18) are sufficient for the convergence of the

Gauss-Seidel method, too. For some matrix classes, the Gauss-Seidel tech-

nique converges faster than the Jacobi method.

The Gauss-Seidel method can also be defined by B = D +U . Furthermore,

symmetric techniques exist alternating between a step with B = D +L and

next step with B = D + U , which can be written in classical form, too.

Relaxation methods

More general, the matrix B in (4.10) may depend on a parameter ω ∈ R.

Consequently, the aim is to choose ω such that ρ(I −B(ω)−1A) is minimal

and thus covergence becomes fast. In relaxation methods, the matrix

B(ω) =
1

ω
(D + ωL) (ω > 0) (4.22)

is selected and ω is called the relaxation parameter. Let x̃k+1 be the result

from the Gauss-Seidel method (4.21). By (4.22), it can be shown that

xk+1 = (1− ω)xk + ωx̃k+1. (4.23)

Setting 0 < ω ≤ 1 is called underrelaxation and results in a convex com-

bination of the old approximation and the Gauss-Seidel approximation. If

75

ω > 1 is applied, the procedure is called overrelaxation and the successive

overrelaxation (SOR) method arises.

For some matrix classes, an optimal relaxation parameter 1 ≤ ω̂ < 2 can

be computed explicitly. Accordingly, the convergence becomes much faster

than for the Gauss-Seidel method.

Application to illustrative example

The convergence of classical methods for linear systems involving the exam-

ple (4.7) is analysed now. For the three introduced techniques, the spectral

radius of the iteration matrix I − B−1A can be calculated directly. We

obtain the following values.

Jacobi method : ρ(I −D−1A) = cos
(

π
M+1

)

Gauss-Seidel method : ρ(I − (D + L)−1A) = cos2
(

π
M+1

)

SOR method : ρ(I −B(ω̂)−1A) =
cos2(π

M+1)

(1+sin(π
M+1))

2

By Theorem 4.1, the convergence is guaranteed in all three schemes. The-

orem 4.2 shows that the magnitude of the spectral radius determines the

speed of convergence, i.e. the number of required steps for achieving a

given accuracy. For M → ∞, we have ρ → 1, which slows down the con-

vergence in all three methods. However, considering a fixed M , the Gauss-

Seidel method is faster than Jacobi’s method. Furthermore, we conclude

for large M
ρ(I −D−1A)σ = ρ(I −B(ω̂)−1A)

⇒ σ = ln ρ(I−B(ω̂)−1A)
ln ρ(I−D−1A) ≈ 4(M+1)

π ,
(4.24)

which implies that the SOR method using optimal relaxation parameter is

more than M times faster than the Jacobi method.

76

Iterative refinement

The class of iterative methods (4.10) includes the iterative refinement, too.

If a linear system Ax = b is solved directly by LU -decomposition using a

computer, then rounding errors cause a perturbed solution x̃ ≈ A−1b. If the

condition of A is not too large, then this approximation can be improved

to machine precision.

Gaussian elimination employing a computer yields a perturbed decomposi-

tion A ≈ L̂Û , i.e.

A = L̂Û + E (4.25)

with an unknown error matrix E. Now we choose B = L̂Û in (4.10).

Remark that L̂, Û do not stand for L,U in (4.15) here. Thus we obtain the

iteration

xk+1 = xk − (L̂Û)−1(Axk − b) = xk − (L̂Û)−1rk, (4.26)

where rk is the residual of the kth approximation. The iteration (4.26)

is cheap, since the decomposition L̂Û is already computed and thus just

forward- and backward substitutions are necessary. Furthermore, we have

(L̂Û)−1A ≈ I, because just rounding errors interfere with L̂, Û . Conse-

quently, the spectral radius of the iteration matrix is small and convergence

becomes very fast. Moreover, we hold a good starting value by the direct

solution x0 = (L̂Û)−1b. In general, only two steps are sufficient to produce

a result with accuracy corresponding to machine precision.

Computing the residual rk, the subtraction causes cancellation due to the

property Axk ≈ b. Hence this value has to computed using higher precision

than the machine precision applied in the other operations. Otherwise, the

result can not be obtain up to machine precision. If x0 represents a rough

approximation, then iterative refinement with exclusively constant precision

may increase the number of correct digits, but can not achieve all digits to

be correct.

77

4.3 Conjugate gradient method

The conjugate-gradient (CG) method of Hestenes and Stiefel represents an

iterative scheme for solving the linear system Ax = b including a symmetric

and positive definite matrix A ∈ Rn×n. Like for classical methods, just one

maxtrix-vector multiplication using A is necessary in each step.

In the kth step, the difference xk − x0 shall be situated in the Krylov space

Kk := span{r0, Ar0, A2r0, . . . , Ak−1r0}, (4.27)

where r0 = b − Ax0 represents the residual for the starting value. This

requirement follows from the Theorem of Cayley-Hamilton, which implies

that a polynomial q of degree n− 1 exists satisfying A−1 = q(A). Hence it

follows

x∗ − x0 = A−1(b− Ax0) = A−1r0 = q(A)r0 ∈ Kn. (4.28)

If the case Kl = Kl+1 arises for some l < n, then it holds Kl = Kn, too.

Thus the space x0 +Kl already contains the exact solution x∗.

Starting from x0, we can try to obtain the exact solution by increasing

successively the dimension of the Krylov space and determining xk in an

optimal sense with respect toKk. Not later than n steps, the method reaches

the exact solution. This approach yields a class of iterative methods, which

are called Krylov-subspace methods.

In this subsection, we consider a symmetric, positive definite matrix A.

Thus the definition

〈x, y〉A := 〈Ax, y〉 = xTAy (4.29)

yields a scalar product and the corresponding norm

‖x‖A :=
√
〈x, x〉A (4.30)

is called the energy norm.

78

Let x0, . . . , xk−1 and the subspace Kk be already determined. In the CG

method, the new approximation xk is fixed by the demand

‖xk − x∗‖A = min
y∈x0+Kk

‖y − x∗‖A, (4.31)

which is equivalent to the condition

〈xk − x∗, u〉A = 0 for all u ∈ Kk. (4.32)

This can be seen via the relation

‖y − x∗‖2
A = ‖y − xk‖2

A + ‖xk − x∗‖2
A + 2〈xk − x∗, y − xk〉A, (4.33)

since y−xk ∈ Kk holds. Thus xk represents the orthogonal projection of x∗

onto the space x0 +Kk w.r.t. 〈·, ·〉A. Remark that the approximation xk is

determined uniquely by the demands above.

The residual rk = b− Axk satisfies

0 = 〈x∗ − xk, u〉A = 〈rk, u〉 for all u ∈ Kk. (4.34)

Thus the residual is orthogonal to the spaceKk with respect to the Euclidean

scalar product. Furthermore, it holds

Kk = span{r0, Ar0, . . . , Ak−1r0} = span{r0, r1, . . . , rk−1} (4.35)

and

〈ri, rj〉 = 0 for i 6= j (i, j = 0, 1, . . . , k). (4.36)

Thereby, we assume rk 6= 0. Otherwise, the exact solution is reached and

the method terminates.

The residuals, which span the Krylov space Kk are orthogonal to each other.

Thus we might think of an algorithm, which determines xk via the demand

(4.31) using projections. Unfortunately, this approach would require the

knowledge of the solution x∗ and thus it is not feasible.

79

On the other hand, we are able to provide an A-orthogonal basis in the

space Kk, i.e.

Kk = span{p0, p1, . . . , pk−1}, 〈pi, pj〉A = 0 for i 6= j. (4.37)

The new approximation simply results in

xk = xk−1 + αk−1pk−1, αk−1 =
〈rk−1, rk−1〉
〈pk−1, pk−1〉A (4.38)

and the residual is computed via

rk = b− Axk = A(x∗ − xk) = A(x∗ − xk−1 − αk−1pk−1)

= rk−1 − αk−1Apk−1.
(4.39)

The new A-orthogonal basis vector is computed employing

pk = rk + βk−1pk−1, βk−1 = − 〈rk, pk−1〉A
〈pk−1, pk−1〉A . (4.40)

The formulae (4.38)-(4.40) form the basis of the CG method.

Theorem 4.3 Let p0 := r0 = b− Ax0. If rk 6= 0 holds, then the sequences

defined by (4.38)-(4.40) satisfy

(i) Kk = span{p0, p1, . . . , pk−1} = span{r0, r1, . . . , rk−1}
(ii) 〈pi, pj〉A = 0 for i 6= j

(iii) ‖xk − x∗‖A = miny∈x0+Kk
‖y − x∗‖A.

Proof: see J. Stoer, R. Bulirsch: Introduction to Numerical Analysis. 2nd

Ed. Springer, New York, 1993.

Due to property (ii), the vectors pk are called conjugate directions. Thus

the CG method is also called method of conjugate directions.

The computation of βk−1 can be done applying

αk−1〈rk, pk−1〉A = 〈αk−1Apk−1, rk〉 = 〈rk−1 − rk, rk〉 = −〈rk, rk〉 (4.41)

80

and thus

βk−1 =
〈rk, rk〉

〈rk−1, rk−1〉 . (4.42)

Hence the complete algorithm reads as follows.

Algorithm 4.1 Conjugate Gradient method

r0 = b− Ax0, p0 = r0

for k = 0, 1, . . . , kmax

αk = rkT
rk

pkT
Apk

xk+1 = xk + αkpk

rk+1 = rk − αkApk

if ‖rk+1‖2 < TOL: exit

βk = rk+1T
rk+1

rkT
rk

pk+1 = rk+1 + βkpk

end

In practical computations, the result xn will not be the exact solution due

to rounding errors. The iteration can be continued and it takes about 4n

steps to obtain the result accurately w.r.t. machine precision. However, in

many applications, we do not require a high accuracy, i.e. an approximation

of the exact solution is sufficient. Consequently, we hope to require k ¿ n

steps to achieve a given accuracy.

Interpretation via Optimisation:

Considering the function

f : Rn → R, f(x) := 1
2x

TAx− bTx, (4.43)

the gradient is gradf(x) = Ax − b. A necessary condition for a local opti-

mum x̂ of f is gradf(x̂) = 0. The exact solution x∗ := A−1b of the linear

system satisfies this requirement. Since A is positive definite, the point x∗

represents the global minimum of f . Given a starting value x0, the CG

81

method chooses p0 as the negative gradient of A. The point x1 is the min-

imum point of f on line line x0 + γp0. Thus the first step corresponds to

the method of steepest descent. Later the approximation xk is chosen as

the minimum point of f on line xk−1 + γpk−1, too. The vectors pk represent

directions of decreasing f , i.e.

pkT
gradf(xk) < 0.

However, they do not represent the steepest descent. Nevertheless, the CG

method yields the exact solution within n steps, whereas the method of

steepest descent may take much longer to generate a reasonable approxi-

mation.

Preconditioning:

Using the energy norm, the estimate

‖xk − x∗‖A ≤ 2

(√
cond(A)− 1√
cond(A) + 1

)k

‖x0 − x∗‖A (4.44)

can be proved, where the condition number refers to the Euclidean norm.

Thus the method converges faster the more the condition number of A

decreases. One can try to scale down the condition number by the trans-

formations

Ax = b Ã MANy = Mb, y = N−1x (4.45)

such that cond(MAN) ¿ cond(A) holds. Instead of performing the trans-

formations explicitely, linear systems including M and N are solved in each

step of the CG algorithm. Accordingly, the matrices M and N shall have a

structure, which enables a fast direct solution of the arising linear systems.

Simple choices for M, N are diagonal matrices, for example.

Since the matrix A is symmetric and positive definite, we perform the pre-

conditioning technique

A Ã (L̃)−1A(L̃−1)−T , (4.46)

82

using a lower triangular matrix L̃, which approximates the Cholesky factor

in A = LLT . Such an approximation can be obtained by an incomplete

Cholesky decomposition, for example.

Another preconditioning strategy, which is successfully used in practice,

is to define the matrix M in (4.45) implicitely via an application of the

symmetric Gauss-Seidel method, whereas N = I is chosen. Therefore the

classical iterative methods can be used as preconditioning steps in more

sophisticated iterative techniques.

4.4 GMRES method

If the matrix A ∈ Rn×n is not symmetric or symmetric but not positive

definite, then the CG method can not be used to solve the linear system

Ax = b. For general matrices A with det A 6= 0, iterative techniques can be

designed, which are based on the minimisation of the residual

h(x) := ‖Ax− b‖2
2 (4.47)

with respect to Krylov spaces. The method of generalised minimal residuals

(GMRES) is the most popular technique of this kind. In the kth step, the

approximation xk is determined by the demand

h(xk) = min
y∈x0+Kk

h(y) = min
y∈Kk

‖Ay + r0‖2
2

(
r0 := Ax0 − b

)
. (4.48)

In the CG method, the requirement (4.31) minimises the distance of the

approximation xk to the exact solution with respect to the energy norm.

Alternatively, the GMRES method tries to minimise the residual of xk in the

Euclidean norm via (4.48). The GMRES scheme yields the exact solution

in at most n steps, too.

In contrast to the CG method, suitable basis vectors for the optimisation

problem can not be obtained directly. Thus a new basis vector in the

Krylov space has to be orthogonalised with respect to the old basis vectors.

83

Consequently, the computational effort increases linearly with the number

of Newton steps, which represents a significant drawback of the GMRES

method.

In practical application, the computational effort can be reduced by restart-

ing the GMRES algorithm after 10 – 100 steps and use the last result as

new starting value. Consequently, convergence slows down and alltogether

more steps are required. However, the complete computational effort will

be lower in general. Furthermore, preconditioning techniques may increase

the speed of convergence in the GMRES method, too.

84

Chapter 5

Methods for Nonlinear Systems

5

In this section, we discuss the numerical solution of nonlinear systems, which

represents finding zeros of a given function F : Rn → Rn. In contrast to

solving linear systems, direct techniques are not feasible and thus itera-

tive methods have to be applied. The case of a univariate function already

indicates the involved concepts and methods. Generalisations to the multi-

dimensional case are straightforward. However, the analysis demands some

sophisticated considerations. We focus on methods of Newton type, which

are the most commonly used techniques in solving nonlinear systems.

5.1 Newton’s Method

5.1.1 Univariate Case

Given a sufficiently smooth function f : R→ R, we are searching for one or

more zeros x̂, i.e.

f(x̂) = 0. (5.1)

Since an analytical solution of the problem (5.1) is impossible in most cases,

we require numerical methods. The numerical techniques are working iter-

85

atively by producing a sequence of approximations

x0, x1, x2, . . . , xk ∈ R.

A simple and robust method represents the bisection. The scheme starts

using two points a < b, where f exhibits opposite signs, i.e. f(a) · f(b) <

0. Consequently, a continuous function f owns at least one zero in [a, b].

By evaluating f in the middle of the interval, we can exclude one half of

the interval due to the arising sign. Thus [a, b] is cut into halves and the

procedure restarts using the approriate half.

Algorithm 5.1 Bisection

A := f(a); B := f(b);

while b− a > tol

t := (a + b)/2; T := f(t);

if A · T > 0 : a := t; A := T ;

else : b := t; B := T ;

x̂ := (a + b)/2

Newton’s method applies information from the derivative of f . This tech-

nique corresponds to approximate f locally by a tangent and to compute

the zero of this straight line. The following figure sketches this approach.

x x x x

y

f

2 1 0

86

Algorithm 5.2 Newton’s method

choose x0;

for k = 0, 1, 2, . . .

xk+1 := xk − f(xk)/f ′(xk);

if |xk+1 − xk| < tol: exit

x̂ := xk+1

To discuss Newton’s method, we analyse shortly one step methods in gen-

eral. A one step iterative method can be written in the form

xk+1 = Φ(xk) (5.2)

using an iteration function Φ : D → D (D ⊂ R). If this iteration converges

to some x̂ and Φ is continuous, then x̂ is a fixed point of Φ, because

x̂ = lim
k→∞

xk+1 = lim
k→∞

Φ(xk) = Φ(lim
k→∞

xk) = Φ(x̂). (5.3)

Definition 5.1 Let x̂ ∈ D be a fixed point of Φ. The method (5.2) is locally

convergent, if a neighbourhood U ⊂ D of x̂ exists such that limk→∞ xk = x̂

holds for all starting values x0 ∈ U . The method (5.2) is globally conver-

gent, if limk→∞ xk = x̂ holds for all starting values x0 ∈ D.

Remark: The local and global convergence imply the uniqueness of the fixed

point in U and D, respectively.

Definition 5.2 Let x̂ ∈ D be a fixed point of Φ. The method (5.2) is locally

convergent of at least order p ≥ 1, if a neighbourhood V ⊂ D of x̂ exists

such that

|xk+1 − x̂| ≤ C|xk − x̂|p

holds for all starting values x0 ∈ V and a constant C ≥ 0. The arising

constant has to satisfy C < 1 in case of p = 1.

87

Remark: Def. 5.2 can be generalised to functions Φ : Rn → Rn by using a

norm ‖ · ‖ instead of the absolute value | · |. In this section, the Euclidean

norm is applied, if not otherwise labelled.

Rule-of-thumb: If the method is convergent of order p ≥ 2, then the number

of correct digits increases in each step by the factor p. (Hence p = 2 implies

a doubling of correct digits in each step.)

The order of convergence is mostly determined via Taylor expansion

Φ(x) = Φ(x̂) + Φ′(x̂)(x− x̂) + 1
2Φ

′′(x̂)(x− x̂)2 + · · ·
⇒ xk+1 = Φ(xk) = Φ(x̂) + Φ′(x̂)(xk − x̂) + 1

2Φ
′′(x̂)(xk − x̂)2 + · · · .

(5.4)

For Newton’s method, we obtain the formulae (provided that f ′(x) 6= 0)

xk+1 = xk − f(xk)

f ′(xk)
⇒ Φ(x) = x− f(x)

f ′(x)
(5.5)

Φ′(x) = 1− f ′(x)2 − f(x)f ′′(x)

f ′(x)2 = f(x)
f ′′(x)

f ′(x)2 . (5.6)

Since f(x̂) = 0 implies Φ(x̂) = x̂ and Φ′(x̂) = 0, it follows

xk+1 = Φ(xk) = Φ(x̂)︸︷︷︸
=x̂

+ Φ′(x̂)︸ ︷︷ ︸
=0

(xk− x̂)+ 1
2Φ

′′(x̂+ϑk(xk− x̂))(xk− x̂)2 (5.7)

⇒ xk+1 − x̂ = 1
2Φ

′′(x̂ + ϑk(xk − x̂))(xk − x̂)2 (5.8)

with ϑk ∈ (0, 1). If Φ′′ is continuous, a compact neighbourhood U ⊂ D of

x̂ exists, where |Φ′′(x)| < 2C holds for all x ∈ U and thus

|xk+1 − x̂| < C|xk − x̂|2. (5.9)

Consequently, Newton’s method is locally convergent of at least order 2

(quadratic convergence). In general, the order is exactly 2, since Φ′′(x̂) 6= 0

mostly occurs. On the contrary, Newton’s method is not globally convergent

(counter-example: arctan-function). Therefore the convergence of Newton’s

method depends essentially on the used starting value.

88

5.1.2 Multivariate Case

Now we consider the numerical solution of nonlinear systems

F (x) = 0 (5.10)

with a sufficiently smooth function F : D → Rn (D ⊂ Rn). Problems of the

form (5.10) arise in many applications, for example, directly by equilibrium

conditions in a discrete problem of indirectly by discretisations of differential

equations.

Newton’s method in the univariate case can be generalised to nonlinear

systems. However, a simple geometric interpretation is not feasible any

more. Alternatively, we employ Taylor expansion with respect to some

starting value x0 and obtain

0 = F (x̂) = F (x0) + DF (x0)(x̂− x0) +O(‖x̂− x0‖2). (5.11)

Thereby, DF ∈ Rn×n represents the Jacobian matrix of F . Neglecting the

last term, we obtain a new approximation x1 for x̂ via

0 = F (x0) + DF (x0)(x1 − x0) ⇒ DF (x0)(x1 − x0) = −F (x0). (5.12)

Consequently, the kth step of Newton’s method reads

Solve: DF (xk)∆xk = −F (xk)

Update: xk+1 = xk + ∆xk.
(5.13)

This approach is also called the Newton-Raphson method (to distinguish

between the variants of Newton’s method).

Algorithm 5.3 Newton’s method

choose x0;

for k = 0, 1, 2, . . .

Solve: DF (xk)∆xk = −F (xk)

Update: xk+1 = xk + ∆xk

89

if ‖xk+1 − xk‖ < tol: exit

x̂ := xk+1

Newton’s method demands the computation of the Jacobian matrix of F in

each step, which is usually done by numerical differentiation. In addition, a

corresponding linear system has to be solved in each step. Thus the problem

of solving a nonlinear system is reduced to the successive solution of linear

systems.

Concerning the convergence of the multivariate Newton method, the follow-

ing theorem gives informations.

Theorem 5.1 Let x̂ be a zero of F : D → Rn (D ⊂ Rn),

F (x) = (f1(x), . . . , fn(x))T , x = (x1, . . . , xn)
T

and F ∈ C2(D). Define

K := {x ∈ Rn : ‖x− x̂‖∞ ≤ r} ⊂ D

and

M := max

{∣∣∣∣
∂2fl

∂xi∂xj
(x)

∣∣∣∣ : 1 ≤ l, i, j ≤ n, x ∈ K
}

.

If DF (x̂) is invertible and

βr ≤ 1
2 with β := n2M‖DF (x̂)−1‖∞

holds, then the sequence (xk)k∈N defined by Newton’s method converges for

any x0 ∈ K to x̂ and it follows

‖xk+1 − x̂‖∞ ≤ β‖xk − x̂‖2
∞ ≤ 1

2‖xk − x̂‖∞.

Proof:

Firstly, we show

‖DF (x)−DF (y)‖∞ ≤ n2M‖x− y‖∞ for all x, y ∈ K.

90

By the mean value theorem, it follows with ϑl ∈ (0, 1)

∂fl

∂xj

(x)− ∂fl

∂xj

(y) =
n∑

q=1

∂2fl

∂xq∂xj

(x + ϑl(x− y))(xq − yq)

∣∣∣∣
∂fl

∂xj

(x)− ∂fl

∂xj

(y)

∣∣∣∣ ≤ nM max
i=1,...,n

(xi − yi) = nM‖x− y‖∞
n∑

j=1

∣∣∣∣
∂fl

∂xj

(x)− ∂fl

∂xj

(y)

∣∣∣∣ ≤ n2M‖x− y‖∞

for each l, which yields the assumption.

By induction, we assume xk ∈ K (x0 ∈ K is a premise). Now Taylor expansion yields

F (xk) = F (x̂)︸ ︷︷ ︸
0

+DF (x̂)(xk − x̂) + Rk,

where the lth component of Rk ∈ Rn reads

Rk
l =

1

2

n∑
i=1

n∑
j=1

∂2fl

∂xi∂xj

(x̂ + ϑl,k(x
k − x̂))(xk

i − x̂i)(x
k
j − x̂j).

Therefore we obtain directly

‖Rk‖∞ ≤ 1
2
n2M‖xk − x̂‖2

∞.

To apply the Newton iteration, we have to show det(DF (xk)) 6= 0. We define the matrix

Hk := DF (xk)−DF (x̂). Since x̂, xk ∈ K holds, it follows

‖Hk‖∞ = ‖DF (xk)−DF (x̂)‖∞ ≤ n2M‖xk − x̂‖∞ ≤ n2Mr.

Furthermore, we have

DF (xk) = DF (x̂) + DF (xk)−DF (x̂) = DF (x̂)(I + DF (x̂)−1Hk).

Thus det(DF (xk)) 6= 0 if and only if det(I + DF (x̂)−1Hk) 6= 0. This is guaranteed by the

property

‖DF (x̂)−1Hk‖∞ ≤ ‖DF (x̂)−1‖∞ · ‖Hk‖∞ ≤ β
n2M

· n2Mr = βr ≤ 1
2

< 1.

The formula of the Newton iteration and the above Taylor expansion yields

xk+1 − x̂ = xk − x̂−DF (xk)−1F (xk) = DF (xk)−1Rk.

91

The general property ‖(I + B)−1‖ ≤ 1/(1− ‖B‖) for ‖B‖ < 1 gives

‖DF (xk)−1‖∞ = ‖(I + DF (x̂)−1Hk)−1DF (x̂)−1‖∞ ≤ 2‖DF (x̂)−1‖∞.

Finally, we obtain

‖xk+1 − x̂‖∞ ≤ ‖DF (xk)−1‖∞ · ‖Rk‖∞
≤ 2‖DF (x̂)−1‖∞ 1

2
n2M‖xk − x̂‖2

∞
= β‖xk − x̂‖2

∞
≤ βr‖xk − x̂‖∞
≤ 1

2
‖xk − x̂‖∞

and thus the predicated convergence results hold. ¤

Conclusions / remarks :

• Newton’s method is locally convergent of at least order 2.

• Existence of zero x̂ and det(DF (x̂)) 6= 0 is postulated.

• Assumptions can not be verified in practical applications.

Another statement, which does not presume the existence of a zero but

other assumptions concerning the starting value, is given by the following

theorem.

Theorem 5.2 (Newton-Kantorovich) Let D ⊂ Rn be open as well as

convex and F : D → Rn smooth (F ∈ C1). Let x0 ∈ D denote a given

starting value with invertible Jacobian DF (x0). Constants α, β, γ ≥ 0 shall

exist, which satisfy

(i) ‖DF (x0)−1F (x0)‖ ≤ α

(ii) ‖DF (x0)−1‖ ≤ β

(iii) ‖DF (x)−DF (y)‖ ≤ γ‖x− y‖ for all x, y ∈ D.

Consider the quantities

h := αβγ, ρ1,2 :=
α

h
(1∓

√
1− 2h).

92

If h ≤ 1
2 and Sρ1

(x0) ⊂ D holds, then the sequence (xk)k∈N defined by

Newton’s method (5.13) is a subset of Sρ1
(x0) and converges to the unique

zero x̂ of F with x̂ ∈ D ∩ Sρ2
(x0).

Proof: see J. M. Ortega, W. C. Rheinboldt: Iterative Solution of Non-linear

Equations in Several Variables. Academic Press, New York, 1970.

5.2 Simplified Newton Method

Newton’s method (5.13) for nonlinear systems demands the computation

of the Jacobian matrix as well as solving the arising linear system in each

step. Both parts may become costly in some applications. Therefore the

idea is to use just the Jacobian corresponding to the starting value.

The algorithm of the simplified Newton method reads like the algorithm of

the ordinary Newton method including the modification

Solve: DF (x0)∆xk = −F (xk)

Update: xk+1 = xk + ∆xk
(5.14)

in the kth step.

Now the advantage is that just a single Jacobian matrix has to be evaluated.

If Gaussian elimination yields the solutions of the linear systems, then the

LU-decomposition has to be computed only once, too. Further solving of

the linear systems by forward- and backward-substitution is cheap. If the

linear systems are solved by iterative methods, then a sophisticated matrix

for preconditioning can be reused in each step.

Theorem 5.3 Let D ⊂ Rn be open as well as convex and F : D → Rn

smooth (F ∈ C1). Let x0 ∈ D denote a given starting value with invertible

93

Jacobian DF (x0). The following assumptions shall be fulfilled:

(i) ‖DF (x0)−1(DF (x)−DF (x0))‖ ≤ θ0‖x− x0‖ for all x ∈ D

with some θ0 ≥ 0

(ii) h0 := θ0‖∆x0‖ ≤ 1
2

(iii) t∗ := 1−√1− 2h0, ρ := t∗
θ0

yield Sρ(x0) ⊂ D.

Then the sequence (xk)k∈N defined by the simplified Newton method (5.14)

remains in Sρ(x0) and converges to some x̂ with F (x̂) = 0. Furthermore, it

holds

‖xk+1 − xk‖ ≤ 1
2(t

k + tk−1)‖xk − xk−1‖, i = 1, 2, . . .

and

‖xk − x̂‖ ≤ t∗ − tk

θ0
, k = 0, 1, 2, . . . ,

where t0 := 0 and tk+1 := h0 + 1
2(t

k)2 for k = 0, 1, 2,

Proof: see P. Deuflhard: Newton Methods for Nonlinear Problems. Sprin-

ger, Berlin, 2004.

Conclusions / remarks:

• Simplified Newton method is locally convergent of order 1.

→ linear convergence

• rate of convergence: Θk := ‖∆xk+1‖
‖∆xk‖ ≤ 1

2(t
k+1 + tk) < t∗ ≤ 1

→ convergence may slow down

• Quantity Θ0 = ‖∆x1‖
‖∆x0‖ ≤ 1

2h0 ≤ 1
4 characterises the local convergence

domain. In contrast to Θ0 < 1 for ordinary Newton method (5.13), the

domain of convergence is reduced. → good starting values required

Further simplified techniques of Newton type:

• Broyden’s rank-one method: Jacobian matrix used in the first step is

modified slightly by a cheap formula in each subsequent step.

94

• quasi Newton method: Jacobian matrix is replaced by rough approxi-

mations.

5.3 Modified Newton Method

The convergence domain of Newton’s method (5.13) is often tiny. Accord-

ingly, the method frequently does not converge for given starting values.

The convergence domain can be enlarged by a damping strategy, which re-

sults in the modified Newton method.

The finding of zeros belonging to a smooth function F : D → Rn (D ⊂ Rn)

is closely connected to problems of minimisation. We define the test function

h : D → R+
0 , h(x) := F (x)TF (x) = ‖F (x)‖2. (5.15)

Since h(x) ≥ 0 for all x and

F (x̂) = 0 ⇔ h(x̂) = 0, (5.16)

a zero of F is equivalent to a global minimum point of h. The method of

steepest descent represents an approach to find the minimum of h. Thereby,

the information from the gradient (written as column vector)

Dh(x) = gradh(x) = 2DF (x)TF (x) (5.17)

is applied. Unfortunately, the rate of convergence is very slow in this

method. On the contrary, we want to exploit Newton’s method, which

is locally quadratic convergence. The Newton correction

∆xk = −DF (xk)−1F (xk) (5.18)

is a direction of descent, i.e. h(xk + ω∆xk) < h(xk) holds for small values

ω ∈ (0, ω0). Because, let α be the angle between ∆xk and −gradh(xk), it

follows

cos α =
−gradh(xk) ·∆xk

‖gradh(xk)‖ · ‖∆xk‖ =
2F (xk)TDF (xk)DF (xk)−1F (xk)

2‖DF (xk)TF (xk)‖ · ‖DF (xk)−1F (xk)‖
≥ ‖F (xk)‖2

‖DF (xk)‖ · ‖DF (xk)−1‖ · ‖F (xk)‖2 =
1

cond2(DF (xk))
> 0,

95

i.e. |α| < π
2 . If cond2(DF (xk)) is huge, then h decays very slowly in direction

∆xk. Often the complete Newton step is too large, i.e. h(xk +∆xk) > h(xk)

holds. The following draft indicates this problem.

 xx

D

i
i

−grad(x)i

ih(x)=h(x)

∆

x

Now the coefficient ωk is chosen such that

‖F (x̃k+1)‖2 < (1− τωk)‖F (xk)‖2 (5.19)

is satisfied, where 0 < τ < 1
2 is selected. The factor τ demands, that

the residual decreases significantly. A common choice represents τ = 1
100

or τ = 1
4 . By choosing ωk sufficiently small, (5.19) is fulfilled. However,

if ωk becomes too small, we see the iteration as divergent and quit. The

parameter ωk satisfying (5.19) can be determined by trying subsequently

the values ω = 1, 1
2 ,

1
4 ,

1
8 , . . . , ωmin. Consequently, the method reduces to the

ordinary Newton method, if (5.19) is always satisfied for ωk = 1.

Algorithm 5.4 modified Newton method

choose x0

choose 0 < τ < 1
2

for k = 0, 1, 2, . . .

Solve: DF (xk)∆xk = −F (xk)

ωk := 1;

x̃k+1 := xk + ωk∆xk;

96

while ‖F (x̃k+1)‖2 ≥ (1− τωk)‖F (xk)‖2 :

ωk := ωk/2;

x̃k+1 := xk + ωk∆xk;

xk+1 := x̃k+1;

if ‖xk+1 − xk‖ < tol: exit

Concerning the convergence behaviour of this modified Newton method, the

following theorem yields informations.

Theorem 5.4 Let F : D → Rn (D ⊂ Rn open), F ∈ C2(D) and y0 ∈ D.

If the set

L := {x ∈ D : ‖F (x)‖2 ≤ ‖F (y0)‖2}
is compact and det DF (x) 6= 0 for all x ∈ L, then the sequence (xk)k∈N
defined by the modified Newton method using 0 < τ < 1

2 converges to a zero

x̂ of F for any starting value x0 ∈ L. For sufficiently large k, the value

ωk = 1 is chosen automatically, i.e. the method is locally convergent of at

least order 2.

Proof: see P. Deuflhard: A modified Newton method for the solution of

illconditioned systems of nonlinear equations with application to multiple

shooting. Num. Math. 22 (1974) S. 289-316.

Conclusions / remarks:

• Modified Newton method is globally convergent in L.

• Assumption det DF (x) 6= 0 for all x ∈ L is strong.

→ size of appropriate L may be small

• Computational effort of modified Newton method increases only by

additional evaluations of function F .

97

Natural scaling:

The convergenge behaviour of the above modified Newton method can often

be improved, if the requirement ‖F (x̃k+1)‖2 < (1−τωk)‖F (xk)‖2 is replaced

by

‖DF (xk)−1F (x̃k+1)‖2 < (1− τωk)‖DF (xk)−1F (xk)‖2. (5.20)

Thus the residuals are scaled by the matrix DF (xk)−1 in the kth step,

which is called natural scaling. This operation is not expensive, since an

LU-decomposition of DF (xk) has been computed before to determine ∆xk.

5.4 Gauss-Newton Scheme

Nonlinear data-fitting problems are described by a function F : D → Rm

with domain D ⊂ Rn and a set of data y ∈ Rm, where m > n holds. The

problem is to determine a vector x∗ ∈ Rn, which minimises

‖y − F (x)‖2 =
m∑

l=1

(yl − Fl(x1, . . . , xn))
2. (5.21)

For a linear function F (x) = Ax (A ∈ Rm×n), the problem reduces to the

linear least-squares problem.

More general, we write the nonlinear least-squares problem in the form

‖G(x)‖2 → min! with G : D → Rm (D ⊂ Rn). (5.22)

An iteration scheme for the numerical solution of (5.22) is obtained by

Taylor expansion using a starting value x0

G(x) = G(x0) + DG(x0)(x− x0) +O(‖x− x0‖2), (5.23)

where DG ∈ Rm×n denotes the Jacobian matrix of G. We assume the

property rankDG = n. If the starting value x0 is close to the minimum

point x∗, then the solution z in the linear least-squares problem

G(x0) + DG(x0)(z − x0) → min! (5.24)

98

will often still be closer to x∗ than x0, i.e. ‖G(z)‖2 < ‖G(x0)‖2. This relation

is not always true. However, using s := z − x0 and a(ω) := ‖G(x0 + ωs)‖2,

we conclude

a′(0) =
d

dω
G(x0 + ωs)TG(x0 + ωs)

∣∣∣∣
ω=0

= 2(DG(x0)s)TG(x0). (5.25)

Since s is the solution of the normal equations

DG(x0)TDG(x0)s = −DG(x0)TG(x0) (5.26)

of the linear least-squares problem, it follows that

‖DG(x0)s‖2 = sTDG(x0)TDG(x0)s = −(DG(x0)s)TG(x0). (5.27)

Thus rankDG(x0) = n and s 6= 0 implies

a′(0) = −2‖DG(x0)s‖2 < 0. (5.28)

Hence the function a(·) decreases for small ω ∈ (0, ω0). Consequently, we

apply a damping strategy like in the modified Newton method. Due to the

similar derivation as in Newton’s approach, the resulting technique is called

Gauss-Newton method.

An appropriate choice of the parameter ωk is given by a damping strategy

employing the condition

‖G(xk)‖2 − ‖G(xk+1)‖2 ≥ 2τωkG(xk)TDG(xk)sk, (5.29)

where 0 < τ < 1
2 is chosen and sk represents the solution of the linear

problem in the kth step. Thereby, ωk is selected as the maximum value in

the sequence 1, 1
2 ,

1
4 , . . . again.

Algorithm 5.5 Gauss-Newton method

choose x0

choose 0 < τ < 1
2

for k = 0, 1, 2, . . .

99

Compute minimum sk of linear least-squares problem

‖G(xk) + DG(xk)sk‖2 → min!

ωk := 1;

x̃k+1 := xk + ωksk;

while ‖G(xk)‖2 − ‖G(xk+1)‖2 < 2τωkG(xk)TDG(xk)sk :

ωk := ωk/2;

x̃k+1 := xk + ωksk;

xk+1 := x̃k+1;

if ‖xk+1 − xk‖ < tol: exit

Theorem 5.5 Let G : D → Rm (D ⊂ Rn open), where m ≥ n, G ∈ C2(D)

and y0 ∈ D. If the set

L := {x ∈ D : ‖G(x)‖2 ≤ ‖G(y0)‖2}

is compact and rankDG(x) = n for all x ∈ L, then the sequence (xk)k∈N
defined by the damped Gauss-Newton method converges for any x0 ∈ L to a

minimum point of ‖G(·)‖2.

Conclusions / remarks:

• The assumption rankDG = n in L is not strong.

• If several local minima exist, the method may converge to a local min-

imum, which is not a global minimum.

• More sophisticated damping strategies are feasible.

100

